
Project no. 034595

SELF
Science, Education and Learning in Freedom

Instrument: SSA - Specific Support Action
Thematic Priority: IST-2005-2.5.5 – Software and Services

IR8.1: Quality Assessment procedures and mechanisms
Work Package 8

Due date of deliverable: D8, June 2008
Actual submission date: June 2008

Start date of project: Duration:
July 1st, 2006 2 years

Fundación Vía Libre Revision [final]
Federico Heinz

Project co-funded by the European Commission
within the Sixth Framework Programme (2002-2006)

Dissemination Level

PU Public PU

PP Restricted to other programme participants (including the
Commission Services)

RE Restricted to a group specified by the consortium (including the
Commission Services)

CO Confidential, only for members of the consortium (including the
Commission Services)

Table of Contents
1Acknowledgements..4
2About this document...5
3Introduction...6

3.1Quality Assurance...6
3.2The problem with “assurance”...6
3.3Quality Assessment as a community-friendly approach to QA.......................7

4QA Mechanisms in the SELF platform..8
4.1QA as a distributed community task...8
4.2The Bookshelf...9
4.3Avoid politics..10
4.4Users pick and choose what they use...12
4.5Modeling vs. correlating...12

5Catalog of current and proposed QA-related user activities..............................14
5.1Version Control...14

5.1.1Selecting a version at a search result...14
5.1.2View an LO's version history...14
5.1.3Merge two versions of an LO...15
5.1.4Select a specific version of an LO..15
5.1.5Notify the user about available updates to an LO.................................15
5.1.6Create a new version of an atomic LO...15
5.1.7Discard private changes..16
5.1.8Commit private changes..16

5.2Bookshelf..16
5.2.1Adding an LO to the Bookshelf..16
5.2.2Removing an LO from the Bookshelf...17
5.2.3Selecting an LO from the Bookshelf..17

5.3Trusted users..17
5.3.1Viewing the list of trusted users..17
5.3.2Adding a user to the list of trusted users..17

5.4Manually Rating LOs..17
5.4.1Rating a version of an LO..18
5.4.2Re-rating a version of an LO..18
5.4.3Entering a QA rating question & answers...18

5.5Aggregate ratings...18
5.5.1Selecting a quality assessment formula..19
5.5.2Editing a formula...19
5.5.3Publishing a formula..19

List of Figures
Figure 1: QA-related metrics...9
Figure 2: Sample history of an object...11

1 Acknowledgements
This document has been written by Federico Heinz with the help of Beatriz
Busaniche and the valuable contributions of the SELF team, especially Rosanna
Forestello, Wouter Tebbens and Nagarjuna G. All participants are gratefully
thanked for their valuable inputs.

IR8.2: QA Procedures and Mechanisms 4

2 About this document
This document describes the procedures and mechanisms that comprise the
SELF platform's approach to Quality Assurance. It describes the specific
problems that arise when attempting to ensure the quality of collectively-
produced materials, and a set of mechanisms that can be put in place to turn
those very problems into sources of information on the material's quality and
evolution, as well as on the trustworthiness its authors and their level of
expertise in specific areas of knowledge.

IR8.2: QA Procedures and Mechanisms 5

3 Introduction
This section describes the issues we have taken into account in order to define
the mechanisms and procedures for Quality Assurance (QA) in the SELF
platform. First of all, we must provide an adequate definition of the term “Quality
Assurance,” in order to be able to analyze how it applies to Learning Objects
(LOs) and to the process of their cooperative development. This will allow us to
identify methods that are well suited to the SELF environment.

3.1 Quality Assurance

The International Organisation for Standardisation (ISO) defines Quality
Assurance as “the assembly of all planned and systematic actions necessary to
provide adequate confidence that a product, process, or service will satisfy given
quality requirements.” In the case of SELF, the products for which we want to
ensure that it is of good enough quality are Learning Objects. For the purpose of
this project, an LO is defined as a digital entity used in the SELF learning
contents. This is in contrast to the definition of the IEEE LOM, whose wider
scope includes any entity, digital or non-digital, that may be used for learning,
education or training. A course, a lesson, a chapter, an image, an audio file are
examples of learning objects in the SELF Platform. In principle, all LOs will be
stored as independent files in the SELF repository.

This definition makes it clear that it's the quality of the materials we are
concerned with, and not that of the content delivery platform or the actual
courses delivered using them, since SELF has neither control nor preferences
regarding these issues.

3.2 The problem with “assurance”
SELF's approach to QA must take into account the project's aim of becoming a
community-driven platform with low participation threshold for all people
involved. The social dynamics of community projects usually dictate that the
participation threshold is proportional to the formality of processes within the
community. A heavily-formalized project such as Debian, for example, requires
that new members of the community actually prove their commitment and
technical prowess before they are accepted.

In the case of Debian, this works because of the project's high profile and
complexity. It is dubious that new projects like SELF can get away with
restrictive rules on who can join before they have achieved a critical membership
mass. This severely limits the range and depth of “planned and systematic
actions” that can be put in place in the platform.

This is compounded with the fact that, while Debian is essentially a publishing
project (i.e. it takes already existing free software programs and publishes them
in a coherent fashion), SELF aims also to be a development platform, i.e. a

IR8.2: QA Procedures and Mechanisms 6

resource for people who want to work collectively in works in progress. This
presents a very particular challenge, which is not present in most processes to
which QA mechanisms are applied: we must do it in a way that doesn't prevent
incomplete works-in-progress from being published and found on the platform.

Another aspect that differentiates SELF from Debian is that of plurality. Debian's
constituency determines what goes in the distribution, and what stays out. This
doesn't present much problems in the case of a free software distribution, but
when we are talking about learning materials, leaving the editorial decisions to a
clique may lead to undesirable effects, such as the suppression of unpopular
views. In this context, publishing too much, even to the extreme of publishing
contradictory views, is better than publishing too little: we can learn from
mistakes only if they are exposed. If they are hidden, we may unnecessarily
encounter them again.

All these considerations run in direct conflict with the idea of quality assurance:
if the delivered content's quality must be assured, then no contribution can be
accepted until its quality has been approved. There's also the issue that every
time a contribution is rejected due to quality reasons, it is likely that the author
will protest the decision. Regardless of the merits of the protest, experience with
other community projects show that just dealing with it can divert significant
resources from useful work. It can also be argued that the idea of “planned and
systematic actions” is contrary to the spirit of cooperative content production
done by loosely-coordinated global groups of people.

3.3 Quality Assessment as a community-friendly approach to
QA

While quality assurance procedures are at odds with some of the goals that are
crucial to SELF's success, there is an alternative, less restrictive approach that
avoids the conflicts while providing equivalent value and even solving some other
problems in the process: allowing all materials to be published, while providing
the user with the tools to perform community-based, peer-to-peer quality
assessment and to filter out those materials which don't satisfy his or her quality
standards.

This mechanisms provides the benefits of quality assurance (i.e. being able to
trust the contents of the learning objects) without restricting the publication of
works in progress or imposing a rigid structure on the production process. The
focus of SELF's QA approach will thus not be on quality assurance methods and
concepts, but rather on enabling the system to accurately assess each learning
object's quality, and on helping users to identify not just high quality materials,
but also promising ones which may need help to get better.

IR8.2: QA Procedures and Mechanisms 7

4 QA Mechanisms in the SELF platform
A key feature of the SELF platform, which makes it possible for distributed
quality assessment to effectively do the job of traditional, process-oriented
quality assurance is the fact it does not just publish learning objects, but rather
the whole history of each LO. Not just the latest version, but all existing versions,
including all intermediate steps and even failed experiments. It is thus
meaningless to say that a given LO is of good or bad quality: we must identify
which version of the LO we are talking about. The quality is thus not associated
to each LO, but to each version of each LO.

The job at hand, then is to help users collectively assess the quality of each
version of each LO, by giving them feedback on key metrics on every one of
them. This approach not only provides the same benefit to users that quality
assurance does, it also solves a number of other problems in the process.

4.1 QA as a distributed community task

Although SELF is focused on free software and open standards, this field of
knowledge is broad enough that setting up and running expert groups with
sufficient diversity to ensure the quality of published materials becomes a
daunting task for any organization. Getting approval from such a body for
possible thousands of documents quickly becomes unmanageable.

The standard technique in the free software world for dealing with
unmanageable tasks is to leave the task to the community. The decision to expose
all of each document's history to the users, and to let the community identify the
worthy versions, removes the need for a decision on each publication and allows
the project to offload the task of evaluating them to a wide audience of
specialists: the platform's users themselves.

For the method to be effective, however, it is important that users understand its
mechanics and benefits. This is a case in which bona fide users who don't use the
system properly are more dangerous than malicious ones: if most legitimate
users adhere to the system's policy, malicious activity becomes evident and can
be routed around rather easily. It is thus important to educate users on the
proper use of SELF's QA mechanisms.

The community-based quality assessment mechanism is structured around two
main metrics: LO popularity (“perceived quality”) and author reputation
(“expected quality”). The former is measured in terms of both the number and
the reputation of people who have enough regard for the quality of a given
version of an LO to keep track of its evolution through their bookshelves. This
allows people to assess how each version of each LO is regarded by people who
work on that area.

IR8.2: QA Procedures and Mechanisms 8

Authors are also rated according to the popularity of their contributions, which is
apportioned to them proportionately to their involvement. The popularity of each
author influences the way the system evaluates quality of each version in two
different ways: for works in which the author participates, her reputation adds to
the “expected quality” measure, in consonance with the generally accepted
principle that “good materials are produced by good authors”. This allows for
promising materials to be identified early when reputable authors begin
collaborating with it.

For works in which the author does not participate, on the other hand, her
reputation acts as a weight factor on the popularity, or “perceived quality”
factor: the boost each version gets for being on the shelf of a user is proportional
to the user's reputation.

4.2 The Bookshelf

The platform provides a working area for users to store references to the LOs
they are working on, known as “the bookshelf”. The bookshelf is an important
component of the quality assessment mechanism, and has several features that
help keep the feedback loop running.

1. Each bookshelf slot does not reference an LO, but a specific version of a
Learning Object.

2. The bookshelf keeps users informed when newer versions of the LO have
been published, so they can take a decision whether to update their
reference to a newer version or not.

IR8.2: QA Procedures and Mechanisms 9

Figure 1: QA-related metrics

QA Metrics

Popularity Absolute number of times the LO is in a bookshelf, either directly or
as part of a composite LO.

Length of edit chain Length of the chain of edits leading to the version. Since each edit
validates the parts that don't change, the length of the chain
validates the surviving text

of authors, weighed by
reputation

Just the sum of the reputations of the authors involved

of page views Indication of how often the page has been read (this is an optional
metric, as viewing a page is more of an indicator of interest in the
subject in general than in the LO in particular)

Reputation

Autor reputation for each version of each LO to which the author has contributed,
multiply its popularity by the author's percentual contribution, and
add them all together, then divide by the highest absolute score
achieved so far, in order to get a number in the [0..1] interval.

3. The system keeps track of which users keep which versions of which LOs in
their bookshelves as a measure of popularity.

4. Bookshelves could, in theory have unlimited capacity. The plaform,
however, keeps the number of bookshelf slots limited, in order to make
them valuable to users. This way, keeping a version on the bookshelf has a
real cost for the user, which makes it likelier that only versions that are
held in high esteem remain on it.

Not all bookshelves have the same size or “popularity weight”. Users with a high
reputation have larger bookshelves, and the popularity weight each slot
contributes to its occupant is larger.

4.3 Avoid politics

Many community projects are riddled with political struggle. This is basically a
consequence of the fact that those projects give a special status to certain
products over others. In Wikipedia, for instance, the last version of an article
supersedes any older versions, and although the user can choose to see the
history, this requires an extra action. Furthermore, Wikipedia only knows how to
handle a linear history, and cannot cope with diverging branches of an article.

The competition for this position of privilege leads to conflicts, and to the so-
called “changefests”: a small number of users who engage in a rapid series of
changes to a small set of pages, each one removing the other's contributions and
adding their own, which in turn get quickly replaced. This often leads to
“authority figures” being called to the scene to mediate in the conflict.

SELF solves this problem by removing the source of the conflict: there is no
designated “official” version of each LO. The SELF platform effectively treats all
versions as equals, thus removing politics and quarrelling as an effective way of
attaining notoriety for one's own contributions.

The fact that there is no designated “official” version of an LO, and that SELF's
view of an LO's history is not linear provides SELF users with a better alternative
to changefests: when they don't like a contribution, they can just contribute
around it. Instead of modifying the conflictive version, all they have to do is add
their contribution to its immediate predecessor, thus creating a new branch. If
the shunned version truly does not contribute anything valuable, it will just
remain abandoned.

The version may, however, not have been rejected because it was poor quality,
but because it expressed a different point of view. Some users may agree with
the rejected version, and they are likely to view the new branch as the conflictive
one. The good thing is, they are still free to continue building a branch upon
whatever version they like best. This means that diverging views or theories can
be expressed on the same LO history, and the structure of the history will
eventually mirror that of the underlying dispute. This is a better approach to
plurality than attempting to enforce a “neutral point of view” of dubious
existence.

IR8.2: QA Procedures and Mechanisms 10

The diagram in Figure 2 illustrates a possible history for a learning object. In it,
each circle represents a version of the LO. The darkness of the circle indicates
the popularity of that particular version (which is measured in-system through
mechanisms described in Section 5), the size of the circle is an indication of the
number of different people who have contributed to it (in each edit cycle, at most
one new contributor can be added).

The diagram tells us a great deal about the LO's history, and even about the
subject matter. It is pretty obvious that there are two diverging views on this
subject, with a significant amount of people supporting each one of them. The
original LO (“a”) started evolving with the contributions of two people, who
didn't take long to realize that they don't agree on everything: when one of them
contributed version “c”, the other one decided not to build on top of that, but
rather on version “b”, creating the branch that starts at “d”. We know it was a
disagreement between these two people because the circles don' t get bigger,
hence the number of contributors to both “c” and “d” is the same.

The author of the “c” branch continued to build on it with versions “g” and “h”,
while other people were busy also building versions “f” and “j” on top of “c”.
These versions don' t seem to have attracted much attention: maybe they were
very low quality, or represent a fringe point of view within the “c” branch, which
continues to grow along another route: three different users built on top of
version “h”, in two different branches that eventually were merged into version
“q”, which currently is the most popular version on that branch and can be safely
assumed to be the best version of those available on the platform for this
particular point of view.

Meanwhile, the “d” branch evolved in a rather uneventful fashion, with people
becoming involved along the way. Version “i”, was dismissed and abandoned. It
was either irrelevant, or it may have been an ill-fated attempt to introduce the
“c” branch's point of view into the “d” branch, and supporters of the “d” branch

IR8.2: QA Procedures and Mechanisms 11

Figure 2: Sample history of an object

f

i

k n o

j

m p
q

l
a b c

d e

g h

simply contributed around it.

4.4 Users pick and choose what they use
One of SELF's features is that it is meant to be a useful tool for educators. Thus,
its users are mainly people who are fluent in the subject matter they teach, and
who can assess each other's work quite effectively. So, instead of using an
indicator that is irrelevant to actual quality, such as how recent the article is, or
its size, we can rely on our user's ability to tell us which materials are good, and
which are bad.

When a user first encounters an LO, she is not presented with any particular
version of it, but with a tree representation of the LO's history, showing all its
branches and intermediate versions. Users can then inspect the different
versions, and use their own judgement and expertise to decide which one they'd
rather work on. This removes the emphasis on being the last person to edit a
document, and puts it where it belongs: in contributing to produce a document
that will appeal to the widest audience.

In a platform that hosts thousands of documents, each one with many different
versions, this can be a daunting task, of course, but the system can offer
assistance: the system keeps track of each user's actions, and try to infer quality
indicators from quantitative, ones such as how many people have contributed to
each LO, how many people prefer this learning object over others on the same
subject, and also how many people prefer a certain version of an LO over
previous and even later versions.

4.5 Modeling vs. correlating
The greatest challenge when assessing the quality of learning objects is finding a
meaningful way to aggregate measurements taken along several different
dimensions into a some kind of metric to represent the LO's overall quality. As a
matter of fact, any formula one may choose to achieve such a goal is disputable,
and probably more a result of the proponent's own conceptions than an objective
viewpoint on issues such as whether a document with many authors is more
likely to be of good quality than one with fewer authors, or whether popularity
withing the SELF environment is indeed a good indicator of quality indicator or
not.

For this reason, the SELF platform at first will not attempt to do such an
aggregation, but rather display a few key metrics for each LO, leaving the task of
interpreting them to the user. The next step will certainly involve working
together with the community to find useful ways to combine these metrics into
something useful, perhaps through the mechanism of user-defined formulas.

The ultimate approach to the problem, however, will be enabled when the
document and user base of the SELF platform has become large enough to be
able to perform statistical analysis on it. Regardless of whether we attempt to
aggregate them or not, the platform will constantly gather information on each

IR8.2: QA Procedures and Mechanisms 12

LO's history and on each user's activity. When we arrive at a size large enough, it
will be feasible to perform an in-depth quality analysis of a sample of the
available learning objects by experts in the respective fields, and then find how
the collected metrics on LOs and authors correlate to the way how the experts
evaluate them. We expect that this correlations will be more accurate at
predicting the quality of an LO (and even at predicting the expected evolution of
an LO's quality) than any a priori model could be.

IR8.2: QA Procedures and Mechanisms 13

5 Catalog of current and proposed QA-related user
activities
Most user activities in the system, such as contributing to an LO, keeping track
of its development through the Bookshelf, using it in a composite LO, etc, are
monitored by the system as indirect indicators of quality. In this sense, pretty
much every change a user makes to the platform's database contributes a small
amount of information that can be used to infer the quality of the LOs affected by
the change. Some special activities, such as rating LO's on specific criteria, are
directly related to Quality Assessment.

This section outlines, in the form of “user stories” the different activities a user
can engage on which are related to quality assessment. Not all of these activities
are implemented in the version of the platform that is available at the time of
writing. The most advanced concepts, such as user-provided formulae and
explicit user trust are forward-looking ideas to be implemented in more
advanced versions of the platform's software.

5.1 Version Control

5.1.1 Selecting a version at a search result
As the result of each search operation, the system delivers a list of learning
objects that match the search criteria. Due to the version control system, each
entry in that list does not represent a single document, but rather its whole
history. When a user clicks on a search result, thus, the user is not taken directly
to the LO, but rather to a view of the LO's history.

5.1.2 View an LO's version history

For each LO, the system provides a view that displays its history as a tree of
versions. Visual feedback is provided to the user as to the popularity of different
branches (for example, through the size of each version's graphical
representation, or the font size of its title).

The system also provides information, or means to get information about the
version, as well as about the amount of change from each version to the next,
and a means for users to inspect the changes made between any two versions, to
better assess whether the changes are useful or not.

Each version that is used in composite learning objects is marked in a distinctive
way, and a mechanism is provided for the user to see which are those learning
objects and to navigate to them.

The system also provides here an interface that allows the user to add any of the
displayed versions to the Bookshelf.

Each version that is available in the user's bookshelf is marked in a distinctive

IR8.2: QA Procedures and Mechanisms 14

way, and a mechanism is provided for the user to move each bookshelf mark to
another version, thus updating the bookshelf marker.

When user Alice updates a bookshelf marker, the system checks the Bookshelf of
all users who trust her. If user Bob trusts Alice, and has in his Bookshelf a
version of the same LO that is behind the version selected by Alice, Bob's
Bookshelf reference to the LO is automatically updated to reflect Alice's
selection. This effect of trust is not transitive: if user Charlie trusts Bob, but not
Alice, he is unaffected.

5.1.3 Merge two versions of an LO

If a user finds that two branches of an LO both have undergone useful changes,
she can use a mechanism provided by the LO version history view to merge the
two. The mechanism entails selecting the two versions (say, versions A and B)
and launching the merge function.

The merge function may find that the changes in the two versions conflict with
each other (i.e. both versions change the same portion of text in different ways),
the system notifies the user of the conflict, and asks the user to resolve them on
one of the versions, say on version A. The resolution of the conflict creates a new
version A', which is then merged with version B to create a new version C.

5.1.4 Select a specific version of an LO
When the system needs the user to select a specific version of an LO for a task, it
displays the view described in the previous section. The user specifies a version
either by clicking on it, or by placing a special marker on it.

5.1.5 Notify the user about available updates to an LO

Whenever a user is looking at a list of learning objects that latches onto a
specific version (such as the Bookshelf or a composite LO), the system displays a
graphical marker next to each LO for which there are newer versions available.
The marker should ideally convey information about how outdated the LO is, by
measuring the distance to the head of the longest branch that descends from this
version.

An UI element next to the LO (it can be part of the mark displayed to signal the
availability of updates) takes the user to the learning object's history, thus
allowing the user to select whether to update to a newer version, and to which
one.

Upgrading the version of a component of a larger LO creates a new version of
the composite LO. In other words: each version of a composite LO is tied to a
specific version of each component LO. To change the version of one or more
components of a composite LO, the system will create a new version of the
composite with the new version references, while the original version will stay as
it was before.

IR8.2: QA Procedures and Mechanisms 15

5.1.6 Create a new version of an atomic LO

When viewing a list of LOs that includes atomic LOs, be it the Bookshelf, a
composite LO, the result of a search, etc, the system provides a mechanism to
invoke the text editor on each one of them. The editor allows the user to perform
changes to the LO and to save them.

There are two modes of saving the changes: “Save” and “Commit”. When the
user clicks on the “Save” option, the changed document is saved to a copy that is
private to the user. Other users can't see this version, nor can they refer to it in
any way. When the user is viewing one of the previously mentioned lists, the
system provides feedback on which of those LOs have been privately changed by
the user. Clicking on the edit option opens the editor on the changed version, not
on the original one. To edit the original version, the user must first discard the
saved changes.

5.1.7 Discard private changes

When the user is viewing any list of LOs, the system provides feedback on which
of those LOs have been privately changed by the user, and a mechanism through
which the user can revert the LO to the original version, discarding the private
changes.

5.1.8 Commit private changes

When the user is satisfied with the changes made to the LO, she can make them
public by using the “Commit” mechanism instead of “Save”. This option creates a
new version of the LO. If other users have committed changes to the original
version of the LO, the version created by the commit option is a sibling of the
versions created by other users. If the user wants to integrate the changes to the
ones made by other users, she must use the merge mechanism, thus creating yet
another version.

5.2 Bookshelf
Each user account has a list of LOs associated with it, called the Bookshelf. The
Bookshelf has limited capacity (which can vary with the reputation of the user)
and always references a specific version of the LO. Participation in LOs that are
present in many Bookshelves has a positive impact on the author's reputation.
The Bookshelf can keep references to more than one version of the same LO,
each reference takes up one Bookshelf slot.

5.2.1 Adding an LO to the Bookshelf
Whenever a user is looking at a list of learning objects, the system provides
visual feedback to identify whether the object is already in the user's Bookshelf.
If it is not, it provides a means to add the object to the Bookshelf. If the object

IR8.2: QA Procedures and Mechanisms 16

has children (i.e. it is the topmost atom of a LO hierarchy), the mechanism allows
the user to choose whether it is just the atom or the composite object that must
be stored in the Bookshelf.

The object will only be stored in the Bookshelf if there is a slot available,
otherwise the system will ask the user to make room for it. A composite object
takes up only one Bookshelf slot.

5.2.2 Removing an LO from the Bookshelf

When the user has the Bookshelf on the screen, the system offers a mechanism
to remove each LO from the Bookshelf. Each LO that is removed from the
Bookshelf frees up one slot.

5.2.3 Selecting an LO from the Bookshelf
When the user has the Bookshelf on the screen, the system will show a link
(which may be anchored on the LO's title itself) that take the user to the editor
screen on the object.

5.3 Trusted users

A proposed upgrade to the system involves associating each user account with a
list of users that are trusted by the account owner. Being trusted by many users
has a positive impact on reputation. The reputation of the trusting users
themselves is taken into account to compute how the trusted user's reputation is
affected. For the trusting user, versions of materials in which a trusted user
participates, or that a trusted user has in his Bookshelf get a boost in their
quality rating. Decisions taken by trusted users may affect the trusting user's
working environment (for example, LOs in their bookshelves may automatically
track the selections of trusted users.). The list of trusted users is of limited
capacity (which can vary with the trusting user's reputation).

A possibility to be evaluated is encoding how much a user trusts another one
with a real number between -1 (absolute distrust) and +1 (absolute trust).

5.3.1 Viewing the list of trusted users

When logged in, the system provides a user interface element which allows the
user to view the list of trusted users. Beyond the usual information and interface
elements displayed in user lists, the system provides an interface element to
delete the user from the list.

5.3.2 Adding a user to the list of trusted users

When user Alice is viewing user Bob's profile, the system provides an interface
element that allows Alice to add Bob to her list of trusted users. If Alice's list of
trusted users is full, the system prompts her to remove other users from her list

IR8.2: QA Procedures and Mechanisms 17

before she adds Bob to it.

5.4 Manually Rating LOs
Some aspects of LOs cannot be accurately assessed by automatic means, and
require feedback by humans.

5.4.1 Rating a version of an LO
When a user is reading an LO, a tab above it allows her to view a series of
assertions regarding the LO, and allowing the user to choose a level of
agreement to the assertions from the list “disagree strongly / disagree /
undecided / agree / agree strongly”. The user may choose to express agreement/
disagreement to any number of these assertions, as well as to leave any question
unanswered. The assertions are of the kind “the text is easy to read and
understand”, “the text is adequate for the intended audience”, “the text is
orthographically and grammatically correct”, etc., which cannot be easily
evaluated by automatic means.

The ratings for previous versions of an LO affect subsequent versions of it only if
the users who rated the previous versions haven't rated the newer ones yet, and
only do so in an attenuated form which gives them less influence with each
intervening version.

The influence of the valuations on the quality assessment of the LO will be
affected by the reputation of the user doing them. Also, the weight of the user's
valuation will be inversely proportional to their authoring participation in the LO.

5.4.2 Re-rating a version of an LO
Each of the user's valuations is recorded as pertinent to the version of the LO
that the user is reviewing, and remains connected both to that version and the
user. At any time, a user may choose to change the answer to any one of the
questions, or even to withdraw any of the answers. If a later version of the object
improves/worsens the score on any of the questions, the new valuation must be
done in the new version, leaving the earlier version's score untouched.

5.4.3 Entering a QA rating question & answers
The system will provide, for users with administrator privileges, a system to edit
QA rating questions. Questions can be either draft (i.e. they are only shown to
the author) or published (i.e. they show up in the rating page for LOs). Questions
have an “LO type attribute” that allows the system to ask different kinds of
questions for different types of media (a question that is relevant to video media
may not be useful for textual media).

IR8.2: QA Procedures and Mechanisms 18

5.5 Aggregate ratings

The system computes aggregate ratings for each LO, by performing calculations
on a number of features, such as the number of Bookshelves the LO is kept in,
weighed by the Bookshelf owner's reputation, the reputation of its authors, the
number of people who have answered quality-related questions about the LO and
the score achieved through these answers, etc.

Since it is unlikely that a single approach will satisfy all users, or that any initial
approach will be satisfactory, the system will allow the definition of different
formulae to compute the aggregate rating, letting users choose which formula
they wish the system to use when it assesses an LO's quality for them.

The system will provide a few pre-defined formulae, one of which is the initial
default formula for new users, as well as interfaces to create simple alternative
user-defined formulae, which can be published and shared among users.

5.5.1 Selecting a quality assessment formula

The user preferences section of the platform provides a page to select and edit
quality assessment formulae. This page lists the available formulae, and can sort
and search them according to a series of criteria, such as popularity (how many
people use it), author's reputation, author's name, etc. The list includes a
description of the formula's intent and other useful information.

For each available formula, the platform provides three basic tools: a way to
apply the formula to the LOs in the user's Bookshelf is a useful preview that can
give the user an indication of whether the formula matches his preferences or
not, a way to select the formula as the quality assessment formula for the user,
and way to edit the formula, producing a new version of it.

The ability to edit a formula can be reserved for users with a reputation above a
certain threshold.

When the user selects a formula, the selection latches onto the current version.

5.5.2 Editing a formula
The system provides different ways of editing formulae, from a very simple linear
combination form in which the user specifies the weight to be assigned to each
indicator before their algebraic sum is performed, to a text box in which the user
can enter Python code which performs arbitrary computations on data obtained
through the platform's API. These availability of different modes of editing can
be restricted to users who have reached different reputation thresholds, so as to
not overwhelm novice users.

Formulae are version-tracked, just like LOs. When a user produces a new version
of a formula, users of the formula are notified and given the choice to update.

IR8.2: QA Procedures and Mechanisms 19

5.5.3 Publishing a formula

Users can choose to commit a formula to the world for others to use and
evaluate. After they do, the formula becomes available in the list of quality
assessment formulae for all users to choose. The number of users of any given
formula affects the reputation of its author.

IR8.2: QA Procedures and Mechanisms 20

	1Acknowledgements
	2About this document
	3Introduction
	3.1Quality Assurance
	3.2The problem with “assurance”
	3.3Quality Assessment as a community-friendly approach to QA

	4QA Mechanisms in the SELF platform
	4.1QA as a distributed community task
	4.2The Bookshelf
	4.3Avoid politics
	4.4Users pick and choose what they use
	4.5Modeling vs. correlating

	5Catalog of current and proposed QA-related user activities
	5.1Version Control
	5.1.1Selecting a version at a search result
	5.1.2View an LO's version history
	5.1.3Merge two versions of an LO
	5.1.4Select a specific version of an LO
	5.1.5Notify the user about available updates to an LO
	5.1.6Create a new version of an atomic LO
	5.1.7Discard private changes
	5.1.8Commit private changes

	5.2Bookshelf
	5.2.1Adding an LO to the Bookshelf
	5.2.2Removing an LO from the Bookshelf
	5.2.3Selecting an LO from the Bookshelf

	5.3Trusted users
	5.3.1Viewing the list of trusted users
	5.3.2Adding a user to the list of trusted users

	5.4Manually Rating LOs
	5.4.1Rating a version of an LO
	5.4.2Re-rating a version of an LO
	5.4.3Entering a QA rating question & answers

	5.5Aggregate ratings
	5.5.1Selecting a quality assessment formula
	5.5.2Editing a formula
	5.5.3Publishing a formula

