

Introduction to
Free Software
Jordi Mas Hernández (coordinador)
David Megías Jiménez (coordinador)
Jesús M. González Barahona
Joaquín Seoane Pascual
Gregorio Robles

XP07/M2101/02708

© FUOC • XP07/M2101/02708 Introduction to Free Software

Jordi Mas Hernández David Megías Jiménez Jesús M. González Barahona

Founding member of Softcatalà and
of the telematic network RedBBS.
He has worked as a consultant in
companies like Menta, Telépolis, Vo-
dafone, Lotus, eresMas, Amena and
Terra España.

Computer Science Engineer by the
Universitat Autònoma de Barcelona
(UAB, Spain). Master in Advanced
Process Automatisation Techniques
by the UAB. PhD. in Computer Sci-
ence by the UAB. Associate Profes-
sor in the Computer Science, Multi-
media and Telecommunication De-
partment of the Universitat Oberta
de Catalunya (UOC, Spain) and Di-
rector of the Master Programme in
Free Software at the UOC.

Professor in the Department of Tele-
matic Systems and Computation of
the Rey Juan Carlos University (Ma-
drid, Spain), where he coordinates
the research group LibreSoft. His
professional areas of interest include
the study of free software develop-
ment and the transfer of knowledge
in this field to the industrial sector.

Joaquín Seoane Pascual Gregorio Robles

PhD. Enigeer of Telecommunicati-
ons in the Politechnical University
of Madrid (Spain). He has worked
in the private sector and has al-
so taught in the Computer Scien-
ce Faculty of that same university.
Nowadays he is professor in the De-
partment of Telematic Systems En-
gineering, and has taught courses
in programming, protocols, distribu-
ted operating systems, Internet ser-
vices, databases, systems adminis-
tration and free software.

Assistant professor in the Rey Juan
Carlos University (Madrid, Spain),
where he acquired his PhD. de-
gree in February 2006. Besides his
teaching tasks, he researches free
software development from the
point of view of software enginee-
ring, with special focus in quantitati-
ve issues.

Fundació per a la Universitat Oberta de Catalunya.
Av. Tibidabo, 39-43, 08035 Barcelona
Material prepared by Eureca Media, SL
© Jesús M. González Barahona, Joaquín Seoane Pascual, Gregorio Robles
© 2008, FUOC. Permission is granted to copy, distribute and modify this document under the terms
of the GNU Free Documentation Licence, Version 1.2 or any subsequent version published by the Free
Software Foundation, with no invariant sections or front-cover or back-cover texts. A copy of the license
is included in the section entitled "GNU Free Documentation License" of this document.

http://selfproject.eu/
http://selfplatform.eu/
http://cordis.europa.eu/ist/
http://ocw.uoc.edu/

© FUOC • XP07/M2101/02708 5 Introduction to Free Software

Introduction

"Anyone who reads this book, if he can write well, may add and change it if he likes. Let
it go from hand to hand: let those who request it have it. As with a ball among young
women, catch it if you can.

Since this is a book of 'Good Love', lend it out gladly: do not make a mockery of its name
by keeping it in reserve; nor exchange it for money by selling or renting it; for 'Good
Love' when bought, loses its charm."

Juan Ruiz, Archpriest of Hita. The Book of Good Love (14th century)

The first version of these notes was written by Jesús M. González Barahona,

Joaquín Seoane Pascual and Gregorio Robles between April and September

2003. Although we had been discussing for a while preparing a document of

this type for the Free Software course that Joaquín and Jesús teach as part of

the PhD programs of their respective departments, it was the initiative of the

Open University of Catalonia (UOC) that commissioned us to prepare material

to introduce the free software masters course, which finally encouraged us to

get started. The involvement of Jordi Mas, the academic coordinator of the

masters course, in this task was crucial, in that he proposed us for the job and

put us in contact with the UOC, additionally supporting our relations with

the UOC throughout the project's duration.

Shortly after handing in the first edition, the authors started retouching the

material as part of an ongoing process, although with varying degrees of ac-

tivity, until this second edition was completed in May 2007. During this ti-

me, the first edition was extensively used in the free software masters of the

UOC and in various other postgraduate courses in Spain and America. The

experience with the UOC has been followed with particular interest by Gre-

gorio Robles, who has participated in it, and has therefore obtained feedback

that has proven extremely valuable for improving the content. The three of

us (Joaquín, Jesús, and since 2006, Gregorio) have also continued with the

postgraduate software course at the UPM (Polytechnic University of Madrid)

and at the URJC (Rey Juan Carlos University), taking advantage of it in order

to test the material.

Once again, the UOC has been the catalyser of this second edition, charging

us with a commission that we have taken too long to complete. The work

of Jordi Mas and David Megías (of the UOC) has been fundamental, and has

provided vital critical support for pushing forward this new edition. The work

of José Ignacio Fernández Villamor and Boni García Gutiérrez, pupils of Joa-

quín Seoane, who have collaborated in reviewing the materials for this second

edition, has also been essential.

Previous�materials

© FUOC • XP07/M2101/02708 6 Introduction to Free Software

Some of the texts in these notes are based on previous material, usually belon-

ging to the authors themselves, and in some cases to third parties (used with

permission when not completely redrafted). Among them, we would mention

the following (at the risk of omitting anyone important):

• There are some fragments (especially on the chapters of history and the

economy) inspired by the document "Free Software / Open Source: Infor-

mation Society Opportunities for Europe?" [132], which Jesús González Ba-

rahona co-edited for the European Commission. However, the fragments

in question have been extended, retouched and updated to such an extent

that in many cases they may be difficult to recognise.

• The section on monopolies and free software (section 5.4) has been based

on the article "Software libre, monopolios y otras yerbas" [84], by Jesús M.

González Barahona.

• The sections on legislative initiatives and public administration initiatives

in relation to free software are partly based on "Iniciativas de las adminis-

traciones públicas en relación al Software Libre" [103] (thanks to Pedro de

las Heras for allowing us to use this material, which he co-authored).

• Part of the section on motives for using free software in the public admi-

nistrations (Section 6.2) is based on the article [85], by Jesús M. González

Barahona.

• The translation of the Free Documentation Licence is an adapted update

of the one made by Igor Támara and Pablo Reyes for version 1.1, whom

we would like to thank for the original translation and their permission

to modify it.

• The chapter on free software engineering is an adaptation of the article on

the state of the art of software engineering applied to free software by Jesús

M. González Barahona and Gregorio Robles for the magazine Novática.

• In the chapter on case studies, the part regarding the development of Li-

nux is based on a presentation made by Juan-Mariano de Goyeneche du-

ring the postgraduate course "Free Programs" of the Polytechnic University

of Madrid during academic year 2002-03.

• The historical part of the detailed study of GNOME has been taken from

the historical introduction included in the book on "Applications deve-

lopment in GNOME2" prepared by GNOME Hispano and written by one

of the authors of this book.

© FUOC • XP07/M2101/02708 7 Introduction to Free Software

• The FreeBSD case study is partly based on the presentation given by Jesús

Rodríguez at the III HispaLinux Conference held in Madrid in the year

2000.

• The Debian and Red Hat case studies are based on the previous work of

González Barahona et al. who have reflected the results of the quantitative

analysis of these two distributions in various articles.

• Various materials, especially updates and new material in the chapter on

case studies, were prepared by José Ignacio Fernández Villamor and Boni

García Gutiérrez towards the beginning of 2007 on a specific branch for

modifications made in the context of that year's edition of the postgra-

duate subject of Joaquín Seoane at the UPM. A large proportion of those

materials were included in time for the second edition.

© FUOC • XP07/M2101/02708 8 Introduction to Free Software

Contents

Educational module 1
Free Software
Jesús M. González Barahona, Joaquín Seoane Pascual and Gregorio Robles

1. Introduction

2. A bit of history

3. Legal aspects

4. Developers and their motivations

5. Economy

6. Free software and public administrations

7. Free software engineering

8. Development environments and technologies

9. Case studies

10. Other free resources

Educational module 2
Appendixes
Jesús M. González Barahona, Joaquín Seoane Pascual and Gregorio Robles

1. Appendix A. Learning guide

2. Appendix B. Key dates in the history of free software

3. Appendix C. GNU Public License

4. Appendix D. Texts of some legislative proposals and related documents

5. Appendix E. Creative Commons' Attribution-ShareAlike

6. Appendix F. GNU Free Documentation License

7. Glossary

8. Style guide

© FUOC • P07/M2101/02709 Free Software

Index

1. Introduction.. 9

1.1. The concept of software freedom.. 9

1.1.1. Definition ... 10

1.1.2. Related terms ... 11

1.2. Motivations ... 12

1.3. The consequences of the freedom of software 12

1.3.1. For the end user .. 13

1.3.2. For the public administration 14

1.3.3. For the developer ... 14

1.3.4. For the integrator .. 15

1.3.5. For service and maintenance providers 15

1.4. Summary ... 15

2. A bit of history.. 16

2.1. Free software before free software .. 17

2.1.1. And in the beginning it was free 17

2.1.2. The 70s and early 80s ... 18

2.1.3. The early development of Unix 19

2.2. The beginning: BSD, GNU .. 20

2.2.1. Richard Stallman, GNU, FSF: the free software

movement is born ... 20

2.2.2. Berkeley's CSRG ... 21

2.2.3. The beginnings of the Internet 23

2.2.4. Other projects .. 25

2.3. All systems go ... 25

2.3.1. The search for a kernel .. 25

2.3.2. The *BSD family .. 25

2.3.3. GNU/Linux comes onstage ... 26

2.4. A time of maturation .. 27

2.4.1. End of the nineties .. 28

2.4.2. Decade of 2000 .. 31

2.5. The future: an obstacle course? .. 38

2.6. Summary ... 39

3. Legal aspects .. 40

3.1. Brief introduction to intellectual property 40

3.1.1. Copyright ... 41

3.1.2. Trade secret .. 43

3.1.3. Patents and utility models .. 43

3.1.4. Registered trademarks and logos 45

3.2. Free software licences .. 45

3.2.1. Types of licences .. 46

© FUOC • P07/M2101/02709 Free Software

3.2.2. Permissive licences ... 47

3.2.3. Strong licences ... 49

3.2.4. Distribution under several licences 53

3.2.5. Program documentation .. 54

3.3. Summary ... 55

4. Developers and their motivations... 57

4.1. Introduction .. 57

4.2. Who are developers? ... 57

4.3. What do developers do? ... 58

4.4. Geographical distribution ... 59

4.5. Dedication ... 61

4.6. Motivations ... 62

4.7. Leadership ... 63

4.8. Summary and conclusions .. 65

5. Economy... 66

5.1. Funding free software projects ... 66

5.1.1. Public funding ... 66

5.1.2. Private not-for-profit funding 68

5.1.3. Financing by someone requiring improvements 69

5.1.4. Funding with related benefits 69

5.1.5. Financing as an internal investment 70

5.1.6. Other financing modes ... 71

5.2. Business models based on free software 73

5.2.1. Better knowledge ... 74

5.2.2. Better knowledge with limitations 75

5.2.3. Source of a free product .. 76

5.2.4. Product source with limitations 77

5.2.5. Special licences .. 78

5.2.6. Brand sale .. 79

5.3. Other business model classifications .. 79

5.3.1. Hecker classification .. 79

5.4. Impact on monopoly situations ... 80

5.4.1. Elements that favour dominant products 81

5.4.2. The world of proprietary software 82

5.4.3. The situation with free software 82

5.4.4. Strategies for becoming a monopoly with free

software .. 83

6. Free software and public administrations 85

6.1. Impact on the public administrations 85

6.1.1. Advantages and positive implications 86

6.1.2. Difficulties of adoption and other problems 89

6.2. Actions of the public administrations in the world of free

software ... 91

© FUOC • P07/M2101/02709 Free Software

6.2.1. How to satisfy the needs of the public

administrations? .. 91

6.2.2. Promotion of the information society 93

6.2.3. Research promotion ... 94

6.3. Examples of legislative initiatives ... 95

6.3.1. Draft laws in France .. 95

6.3.2. Draft law of Brazil ... 96

6.3.3. Draft laws in Peru .. 97

6.3.4. Draft laws in Spain .. 98

7. Free software engineering ... 100

7.1. Introduction .. 100

7.2. The cathedral and the bazaar ... 100

7.3. Leadership and decision-making in the bazaar 102

7.4. Free software processes ... 104

7.5. Criticism of ''The cathedral and the bazaar'' 105

7.6. Quantitative studies .. 106

7.7. Future work ... 109

7.8. Summary ... 110

8. Development environments and technologies....................... 111

8.1. Description of environments, tools and systems 111

8.2. Languages and associated tools .. 112

8.3. Integrated development environments 113

8.4. Basic collaboration mechanisms ... 113

8.5. Source management .. 115

8.5.1. CVS ... 116

8.5.2. Other source management systems 119

8.6. Documentation ... 120

8.6.1. DocBook ... 121

8.6.2. Wikis.. 122

8.7. Bug management and other issues ... 123

8.8. Support for other architectures ... 124

8.9. Development support sites ... 125

8.9.1. SourceForge .. 125

8.9.2. SourceForge heirs ... 127

8.9.3. Other sites and programs .. 128

9. Case studies.. 129

9.1. Linux ... 130

9.1.1. A history of Linux ... 131

9.1.2. Linux's way of working ... 132

9.1.3. Linux's current status .. 133

9.2. FreeBSD .. 135

9.2.1. History of FreeBSD ... 135

9.2.2. Development in FreeBSD ... 136

9.2.3. Decision-making process in FreeBSD 137

© FUOC • P07/M2101/02709 Free Software

9.2.4. Companies working around FreeBSD 137

9.2.5. Current status of FreeBSD ... 138

9.2.6. X-ray of FreeBSD .. 138

9.2.7. Academic studies on FreeBDS .. 140

9.3. KDE .. 141

9.3.1. History of KDE ... 141

9.3.2. Development of KDE ... 142

9.3.3. The KDE League .. 142

9.3.4. Current status of KDE ... 144

9.3.5. X-ray of KDE .. 145

9.4. GNOME ... 147

9.4.1. History of GNOME .. 147

9.4.2. The GNOME Foundation .. 148

9.4.3. The industry working around GNOME 150

9.4.4. GNOME's current status .. 151

9.4.5. X-ray of GNOME ... 152

9.4.6. Academic studies on GNOME 154

9.5. Apache ... 154

9.5.1. History of Apache .. 155

9.5.2. Development of Apache .. 156

9.5.3. X-ray of Apache ... 156

9.6. Mozilla ... 158

9.6.1. History of Mozilla .. 158

9.6.2. X-ray of Mozilla ... 161

9.7. OpenOffice.org .. 162

9.7.1. History of OpenOffice.org ... 163

9.7.2. Organisation of OpenOffice.org 163

9.7.3. X-ray of OpenOffice.org .. 164

9.8. Red Hat Linux ... 165

9.8.1. History of Red Hat ... 165

9.8.2. Current status of Red Hat. ... 167

9.8.3. X-ray of Red Hat .. 167

9.9. Debian GNU/Linux ... 169

9.9.1. X-ray of Debian ... 171

9.9.2. Comparison with other operating systems 173

9.10.Eclipse .. 174

9.10.1.History of Eclipse ... 174

9.10.2.Current state of Eclipse ... 175

9.10.3.X-ray of Eclipse .. 176

10. Other free resources.. 178

10.1.The most important free resources ... 178

10.1.1.Scientific articles .. 178

10.1.2.Laws and standards. .. 179

10.1.3.Encyclopaedias ... 181

10.1.4.Courses ... 182

10.1.5.Collections and databases ... 183

© FUOC • P07/M2101/02709 Free Software

10.1.6.Hardware .. 183

10.1.7.Literature and art ... 184

10.2.Licenses for other free resources ... 184

10.2.1.GNU free documentation license 185

10.2.2.Creative Commons licenses .. 186

Bibliography.. 189

© FUOC • P07/M2101/02709 9 Free Software

1. Introduction

"If you have an apple and I have an apple and we exchange apples, then you and I will
still each have one apple. But if you have an idea and I have an idea and we exchange
these ideas, then each of us will have two ideas."

Attributed to Bernard Shaw

What is free software? What is it and what are the implications of a free pro-

gram licence? How is free software developed? How are free software projects

financed and what are the business models associated to them that we are ex-

periencing? What motivates developers, especially volunteers, to become in-

volved in free software projects? What are these developers like? How are their

projects coordinated, and what is the software that they produce like? In short,

what is the overall panorama of free software? These are the sort of questions

that we will try to answer in this document. Because although free software is

increasing its presence in the media and in debates between IT professionals,

and although even citizens in general are starting to talk about it, it is still for

the most part an unknown quantity. And even those who are familiar with it

are often aware of just some of its features, and mostly ignorant about others.

To begin with, in this chapter we will present the specific aspects of free softwa-

re, focusing mainly on explaining its background for those approaching the

subject for the first time, and underlining its importance. As part of this back-

ground, we will reflect on the definition of the term (to know what we're

talking about) and on the main consequences of using (and the mere existen-

ce of) free software.

1.1. The concept of software freedom

Since the early seventies we have become used to the fact that anyone com-

mercialising a program can impose (and does impose) the conditions under

which the program can be used. Lending to a third party may be prohibited

for example. Despite the fact that software is the most flexible and adaptable

item of technology that we have, it is possible to impose the prohibition (and

it frequently is imposed) to adapt it to particular needs, or to correct its errors,

without the explicit agreement of the manufacturer, who normally reserves

the exclusive right to these possibilities. But this is just one of the possibilities

that current legislation offers: free software, on the other hand, offers freedoms

that private software denies.

Private Software

In this text we will use the
term private software to refer
to any program that cannot be
considered free software in ac-
cordance with the definition
we provide later.

© FUOC • P07/M2101/02709 10 Free Software

1.1.1. Definition

So, the term free software (or free programs), as conceived by Richard Stallman

in his definition (Free Software Foundation, "Free software definition" http://

www.gnu.org/philosophy/free-sw.html [120]), refers to the freedoms granted

to its receiver, which are namely four:

1) Freedom to run the program in any place, for any purpose and for ever.

2) Freedom to study how it works and to adapt it to our needs. This requires

access to the source code.

3) Freedom to redistribute copies, so that we can help our friends and neigh-

bours.

4) Freedom to improve the program and to release improvements to the pu-

blic. This also requires the source code.

The mechanism that guarantees these freedoms, in accordance with current

legislation, is distribution under a specific licence as we will see later on (chap-

ter 3). Through the licence, the author gives permission for the receiver of the

program to exercise these freedoms, adding also any restrictions that the aut-

hor may wish to apply (such as to credit the original authors in the case of a

redistribution). In order for the licence to be considered free, these restrictions

must not counteract the abovementioned freedoms.

The ambiguity of the term free

The original term in English for free programs is free software. However, in English, as well
as free standing for 'freedom" the term can mean 'free of charge' or 'gratis', which causes a
great deal of confusion. Which is why often the English borrow Spanish words and refer
to libre software, as opposed to gratis software, just as we borrow the word software.

Therefore, the definitions of free software make no reference to the fact that

it may be obtained free of charge: free software and gratis software are two

very different things. However, having said this, we should also explain that

due to the third freedom, anyone can redistribute a program without asking

for a financial reward or permission, which makes it practically impossible to

obtain big profits just by distributing free software: anyone who has obtained

free software may redistribute it in turn at a lower price, or even for free.

Note

Despite the fact that anyone can commercialise a given program at any price, and that
this theoretically means that the redistribution price tends towards the marginal cost
of copying the program, there are business models based precisely on selling software,
because there are many circumstances in which the consumer will be prepared to pay in
exchange for certain other benefits, such as for example a guarantee, albeit a subjective
one, for the software acquired or an added value in the choice, updating and organisation
of a set of programs.

© FUOC • P07/M2101/02709 11 Free Software

From a practical point of view, several texts define more precisely what con-

ditions a licence must fulfil in order to be considered a free software licen-

ce. Among these, we would highlight for their historical importance, the free

software definition of the Free Software Foundation (http://www.gnu.org/phi-

losophy/free-sw.html) [120], the Debian directives for deciding whether a pro-

gram is free (http://www.debian.org/social_contract.html#guidelines) [104]

and the definition of the term open source by the Open Source Initiative (http:/

/www.opensource.org/docs/definition_plain.html) [215], which is very simi-

lar to the preceding ones.

Note

For example, the Debian directives go into the detail of allowing the author to demand
that distributed source codes not be modified directly, but rather that the original is
accompanied by separate patches and that binary programs be generated with different
names to the original. They also demand that the licences do not contaminate other
programs distributed by the same means.

1.1.2. Related terms

The term open source software ('open source programs'), promoted by Eric

Raymond and the Open Source Initiative is equivalent to the term free softwa-

re . Philosophically speaking, the term is very different since it emphasises

the availability of the source code and not its freedom, but the definition is

practically the same as Debian's ("The open source definition", 1998 http://

www.opensource.org/docs/definition_plain.html) [183]. This name is politi-

cally more aseptic and emphasises the technical side, which can provide tech-

nical benefits, such as improved development and business models, better se-

curity, etc. Strongly criticised by Richard Stallman ("Why free software is better

than open source") [204] and the Free Software Foundation (http://www.fsf.org)

[27], it has resonated far better with the commercial literature and with the

company strategies that one way or another support the model.

Other terms associated in some way to free software are as follows:

Freeware These are free programs. They are normally only distribu-
ted in binary format, and can be obtained free of charge.
Sometimes it is possible to obtain permission to redistri-
bute, and others not, meaning that then it can only be
obtained from the "official" site maintained for that pur-
pose. It is frequently used to promote other programs
(normally with more complete functionality) or services.
Examples of this type of programs include Skype, Google
Earth or Microsoft Messenger.

Shareware This is not even gratis software, but rather a distribution
method since usually the programs can be copied freely,
generally without source code, but not used continuously
without paying for them. The requirement to pay may be
motivated by a limited functionality, being sent annoying
messages or the mere appeal to the user's ethic. Also, the
licence's legal terms may be used against the transgres-
sor.

http://www.gnu.org/philosophy/free-sw.html
http://www.gnu.org/philosophy/free-sw.html
http://www.debian.org/social_contract.html
http://www.opensource.org/docs/definition_plain.html
http://www.opensource.org/docs/definition_plain.html
http://www.opensource.org/docs/definition_plain.html
http://www.opensource.org/docs/definition_plain.html
http://www.fsf.org/

© FUOC • P07/M2101/02709 12 Free Software

Charityware,�careware This is normally shareware that requires payment to be
directed towards a sponsored charitable organisation. In
many cases, instead of demanding payment, a volun-
tary contribution may be requested. Some free software,
such as Vim, asks for voluntary contributions of this natu-
re (Brian Molenaar, "What is the context of charityware?")
[173].

Public�domain Here, the author totally renounces all his rights in favour
of the public domain, and this needs to be explicitly sta-
ted in the program since otherwise, the program will be
deemed private and nothing can be done with it. In this
case, if additionally the source code is provided, the pro-
gram is free.

Copyleft This is a particular case of free software where the licence
requires any distributed modifications to also be free.

Proprietary,�locked-in,�non-free These are terms used to refer to software that is neither
free nor open source.

1.2. Motivations

As we have seen, there are two large families of motivations for free software

development, which likewise give rise to the two names by which it is known:

• The ethical motivation, championed by the Free Software Foundation

(http://www.fsf.org) [27], which has inherited the hacker culture and sup-

ports the use of the term free, arguing that software is knowledge that

should be shared unimpeded, that hiding it is antisocial and additionally

claims that the ability to modify programs is a form of freedom of expres-

sion. You can study this in more depth by reading (Free software, free society.

Selected essays of Richard M. Stallman) [211] or the analysis of Pekka Hima-

nen (The hacker ethic and the spirit of the information age. Random House,

2001) [144].

• The pragmatic motivation, championed by the Open Source Initiative

(http://www.opensource.org) [54] which supports the use of the term open

source, and argues the case of the technical and financial advantages that

we will discuss in the next section.

Aside from these two main motivations, people working on free software can

do so for many other reasons, including for fun (Linus Torvalds and David

Diamond, Texere, 2001) [217] or for money, potentially with sustainable bu-

siness models. Chapter 4 studies these motivations in detail on the basis of ob-

jective analyses.

1.3. The consequences of the freedom of software

Free software offers many advantages and, of the few disadvantages, many

have been exaggerated (or invented) by proprietary competitors. The most

well-founded disadvantage is the financial one, since as we have seen it is

not possible to make much money from its distribution, which can and tends

http://www.fsf.org/
http://www.opensource.org/

© FUOC • P07/M2101/02709 13 Free Software

to be made by someone other than the author. This is why other business

models and financing mechanisms are needed, which we look into in chapter

5. Other disadvantages, such as the lack of support or poor quality, are related

to financing but also in many cases are false, since even software with no form

of financing tends to offer good support levels thanks to user and developer

forums, and often the quality is very high.

Bearing in mind the financial considerations, we should note that the free

software cost model is very different to the private software cost model, since

a large amount of it develops outside of the formal monetary economy, and

frequently using exchange/barter mechanisms: "I give you a program that you

are interested in, and you adapt it to your architecture and make the impro-

vements that you need." Chapter 7 discusses the right software engineering

mechanisms to make the most of these unpaid for human resources with their

own particular features, while chapter 8 studies the tools used to make this

collaboration effective. Also, a large share of the costs is reduced by the fact

that it is free, since new programs do not need to start from scratch, because

they can reuse already made software. The distribution also has a much lower

cost, since it is distributed via the Internet and with free advertising through

public forums designed for this purpose.

Another outcome of the freedoms is the quality resulting from the voluntary

collaboration of people who contribute or discover and notify bugs in envi-

ronments or situations that are unimaginable for the original developer. Plus,

if a program does not offer sufficient quality, the competition may take it and

improve on it on the basis of what there is. This is how collaboration and compe-

tition, two powerful mechanisms, combine in order to produce better quality.

Now let's examine the beneficial consequences for the receiver.

1.3.1. For the end user

The end user, whether an individual or a company, can find real competition

in a market with a monopoly trend. To be precise, it does not necessarily de-

pend on the software manufacturer's support, since there may be several com-

panies, even small ones with the source code and the knowledge that allows

them to do business while keeping certain programs free.

Trying to find out the quality of a product no longer relies so much on the

manufacturer's trustworthiness as on the guide given by the community's ac-

ceptance and the availability of the source code. Also, we can forget the black

boxes, that must be trusted "because we say so", and the strategies of manu-

facturers that can unilaterally decide whether to abandon or maintain a par-

ticular product.

© FUOC • P07/M2101/02709 14 Free Software

Evaluating products before they are adopted has been made much easier now,

since all we have to do is to install the alternative products in our real envi-

ronment and test them, whereas for private software we must rely on external

reports or negotiate tests with suppliers, which are not always possible.

Because of the freedom to modify the program for own use, users are able

to customise it or adapt it to own requirements correcting any errors if there

are any. The process of debugging errors found by private software users is

normally extremely laborious, if not impossible, since if we manage to get the

errors debugged, the correction will often be incorporated in the following

version, which may take years to be released, and which moreover we will have

to buy again. With free software, on the other hand, we can make corrections

or repairs ourselves, if we are qualified, or otherwise outsource the service. We

can also, directly or by contracting external services, integrate the program

with another one or audit its quality (for example in terms of security). To a

great extent control is passed on from the supplier to the user.

1.3.2. For the public administration

The public administration is a large user of special characteristics, as it has a

special obligation towards its citizens, whether to provide accessible services,

neutral in relation to manufacturers, or to guarantee the integrity, utility, pri-

vacy and security of their data in the long term. All of the above makes it

obligatory for the public administration to be more respectful towards stan-

dards than private companies and to maintain data in open formats and to

process data with software that is independent of usually foreign companies'

strategies, certified as secure by an internal audit. Adaptation to standards is

a notable feature of free software that private software does not respect to the

same extent, because it is generally eager to create captive markets.

Also, the Administration serves as a sort of showcase and guide for industry,

meaning that it has a great impact, which ought to be directed at weaving a

technological fabric that generates national wealth. This wealth may be cre-

ated by promoting the development of companies dedicated to developing

new free software for the Administration, or maintaining, adapting or audi-

ting existing software. In chapter 6, we will look at this issue in more depth.

1.3.3. For the developer

For the software developer and producer, freedom significantly changes the

rules of the game. It makes it easier to continue to compete while being small

and to acquire cutting edge technology. It allows us to take advantage of ot-

hers' work, competing even with another product by modifying its own code,

although the copied competitor can then also take advantage of our code (if it

is copyleft). If the project is well-managed, it is possible to obtain the free colla-

boration of a large number of people and, also, to obtain access to a virtually

© FUOC • P07/M2101/02709 15 Free Software

free and global distribution system. Nonetheless, the issue of how to obtain

financial resources remains, if the software is not the product of a paid-for

commission. Chapter 5 deals with this aspect.

1.3.4. For the integrator

For integrators, free software is paradise. It means that there are no longer

black boxes that need to be fitted together, often using reverse engineering.

Rough edges can be smoothed out and parts of programs can be integrated in

order to obtain the required integrated product, because there is a huge shared

pool of free software from which the parts can be extracted.

1.3.5. For service and maintenance providers

Having the source code changes everything and puts us in the same position

as the producer. If the position is not the same, it is because we are lacking

an in-depth knowledge of the program that only the developer has, which

means that it is advisable for maintenance providers to participate in the pro-

jects that they are required to maintain. The added value of services is much

more appreciated because the cost of the program is low. It is currently the

clearest business with free software and the one where the most competition

is possible.

1.4. Summary

This first chapter has served as a preliminary encounter with the world of free

software. The concept defined by Richard Stallman is based on four freedoms

(freedom to execute, freedom to study, freedom to redistribute and freedom to

improve), two of which require access to the source code. This accessibility and

its advantages have motivated another less ethical and more pragmatic point

of view, defended by the Open Source Initiative, which has given rise to anot-

her term: open source software . We have also mentioned other related similar

or opposite terms, which serve to clarify various concepts. Finally, we have

discussed the consequences of free software for the main parties involved.

© FUOC • P07/M2101/02709 16 Free Software

2. A bit of history

"When I started working at the MIT Artificial Intelligence Lab in 1971, I became part
of a software-sharing community that had existed for many years. Sharing of software
was not limited to our particular community; it is as old as computers, just as sharing of
recipes is as old as cooking. But we did it more than most. [...] We did not call our software
free software, because that term did not yet exist; but that is what it was. Whenever people
from another university or a company wanted to port and use a program, we gladly
let them. If you saw someone using an unfamiliar and interesting program, you could
always ask to see the source code, so that you could read it, change it, or cannibalize
parts of it to make a new program."

"When I started working at the MIT Artificial Intelligence Lab in 1971, I became part of a
software-sharing community that had existed for many years. Sharing software was not
limited to our particular community: it is as old as computers, just as sharing of recipes
is as old as cooking. But we did it more than most. [...] We did not call our software free
software because that term did not yet exist; but that is what it was. Whenever people
from another university or a company wanted to port and use a program, we gladly
let them. If you saw someone using an unfamiliar and interesting program, you could
always ask to see the source code, so that you could read it, change it, or cannibalise
parts of it to make a new program."

Richard Stallman, "The GNU Project" (originally published in the book Open sources) [208]

Although all the histories associated to IT are necessarily brief, free software's

is one of the longest. In fact, we could say that in the beginning almost all

developed software fulfilled the definition of free software , even though the

concept didn't even exist yet. Later the situation changed completely, and pri-

vate software dominated the scene, almost exclusively, for a fairly long time.

It was during that period that the foundations were laid for free software as we

know it today, and when bit by bit free programs started to appear. Over time,

these beginnings grew into a trend that has progressed and matured to the

present day, when free software is a possibility worth considering in virtually

all spheres.

This history is largely unknown, to such an extent that for many IT professi-

onals private software is software "in its natural state". However, the situation

is rather the opposite and the seeds of change that could first be discerned in

the first decade of the 21st century had already been sown in the early 1980s.

Bibliography

There are not many detailed histories of free software, and the ones that there are, are
usually articles limited to their main subject. In any case, interested readers can extend
their knowledge of what we have described in this chapter by reading "Open Source Ini-
tiative. History of the OSI" [146] (http://www.opensource.org/docs/history.php), which
emphasises the impact of free software on the business community in the years 1998
and 1999; "A brief history of free/open source software movement" [190], by Chris Rasch,
which covers the history of free software up until the year 2000, or "The origins and fu-
ture of open source software" (1999) [177], by Nathan Newman, which focuses to a large
extent on the US Government's indirect promotion of free software or similar systems
during the decades of the 1970s and the 1980s.

© FUOC • P07/M2101/02709 17 Free Software

2.1. Free software before free software

Free software as a concept did not appear until the beginning of the 1980s.

However, its history can be traced back to several years earlier.

2.1.1. And in the beginning it was free

During the seventies, the IT panorama was dominated by large computers,

mainly installed in companies and governmental institutions. IBM was the

leading manufacturer, way ahead of its competition. During this period, when

buying a computer (the hardware), the software came added. As long as the

maintenance contract was paid for, access was given to the manufacturer's

software catalogue. Plus, the idea of programs being something "separate" from

a commercial point of view was uncommon.

In this period, software was normally distributed together with its source code

(in many cases just as source code), and in general, with no practical restricti-

ons. User groups such as SHARE (users of IBM systems) or DECUS (DEC users)

participated in these exchanges, and to a certain extent, organised them. The

"Algorithms" section of the magazine Communications of the ACM was another

good example of an exchange forum. We could say that during these early

years of IT, software was free, at least in the sense that those who had access

to it could normally have access to the source code, and were used to sharing

it, modifying it and also sharing these modifications.

On 30th June 1969, IBM announced that as of 1970, it would sell part of

its software separately (Burton Grad, 2002) [131]. This meant that its clients

could no longer obtain the programs they needed included in the price of

the hardware. Software started to be perceived as something with an intrinsic

value, and consequently, it became more and more common to scrupulously

restrict access to the programs and the possibility of users sharing, modifying

or studying the software was limited as much as possible (technically and le-

gally). In other words, the situation changed to the one that continues to be

case in the world of software at the beginning of the 21st century.

Bibliography

Readers interested in learning about this transition period, can read, for example "How
the ICP Directory began" [226] (1998), in which Larry Welke discusses how one of the
first software catalogues not associated to a manufacturer was born, and how during this
process it was discovered that companies would be prepared to pay for programs not
made by their computer manufacturers.

In the mid-1970s it was already totally common, in the field of IT, to find pri-

vate software. This meant an enormous cultural change among professionals

who worked with software and was the beginning of a flourishing of a large

© FUOC • P07/M2101/02709 18 Free Software

number of companies dedicated to this new business. It would still be almost

a decade before, in an organised manner and as a reaction to this situation,

what we now know as free software started to appear.

2.1.2. The 70s and early 80s

Even when the overwhelming trend was to explore the private software model,

there were initiatives that showed some of the characteristics of what would

later be considered free software. In fact, some of them produced free software

as we would define it today. Of these, we would mention SPICE, TeX and Unix,

which is a much more complex case.

SPICE (Simulation Program with Integrated Circuit Emphasis) is a program

developed by the University of California, in Berkeley, in order to simulate the

electrical characteristics of an integrated circuit. It was developed and placed

in the public domain by its author, Donald O. Pederson, en 1973. SPICE was

originally a teaching tool, and as such rapidly spread to universities worldwi-

de. There it was used by many students of what was then an emerging disci-

pline: integrated circuits design. Because it was in the public domain, SPICE

could be redistributed, modified, studied. It could even be adapted to speci-

fic requirements, and that version could be sold as a private product (which

is what a large number of companies have done dozens of times throughout

their history). With these characteristics, SPICE had all the cards to become

the industry standard, with its different versions. And indeed, that is what

happened. This was probably the first program with free software characteris-

tics that for a certain period captured a market, the one of integrated circuits

simulators, and that undoubtedly was able to do so precisely thanks to these

characteristics (in addition to its undeniable technical qualities).

Bibliography

More information on the history of SPICE can be consulted in "The life of SPICE", pre-
sented during the Bipolar Circuits and Technology Meeting, Minneapolis, MN, USA, in
September 1996 [175].

You can find the SPICE web page at http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE/.

Donald Knuth started to develop TeX during a sabbatical year, in 1978. TeX is

an electronic typography system commonly used for producing high-quality

documents. From the start, Knuth used a licence that today would be conside-

red a free software licence. When the system was considered sufficiently sta-

ble, in 1985, he maintained that licence. At that time, TeX was on the largest

and most well-known systems that could be considered free software.

Bibliography

You can find some of the milestones in the history of TeX by consulting online http://
www.math.utah.edu/software/plot79/tex/history.html [39]. For further details, the cor-
responding article in Wikipedia is also extremely useful, http://www.wikipedia.org/wiki/
TeX [233].

http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE/
http://www.math.utah.edu/software/plot79/tex/history.html
http://www.math.utah.edu/software/plot79/tex/history.html
http://www.wikipedia.org/wiki/TeX
http://www.wikipedia.org/wiki/TeX

© FUOC • P07/M2101/02709 19 Free Software

2.1.3. The early development of Unix

Unix, one of the first portable operating systems, was originally created by

Thompson and Ritchie (among others) from AT&T's Bell Labs. It has continu-

ed to develop since its birth around 1972, giving rise to endless variants sold

(literally) by tens of companies.

In the years 1973 and 1974, Unix arrived at many universities and research

centres worldwide, with a licence that permitted its use for academic purpo-

ses. Although there were certain restrictions that prevented its free distributi-

on, among the organisations that did possess a licence the functioning was

very similar to what would later be seen in many free software communities.

Those who had access to the Unix source code were dealing with a system

that they could study, improve on and expand. A community of developers

emerged around it, which soon gravitated towards the CSRG of the University

of California, in Berkeley. This community developed its own culture, which

as we will see later, was very important in the history of free software. Unix

was, to a certain extent, an early trial for what we would see with GNU and

Linux several years later. It was confined to a much smaller community, and

the AT&T licence was necessary, but in all other aspects, its development was

very similar (in a far less communicated world).

Development methods inherent to free software

In Netizens. On the history and impact of Usenet and the Internet (IEEE Computer Society
Press, 1997 [139], page 139) we can read a few lines that could refer to many free softwa-
re projects: "Contributing to the value of Unix during its early development, was the
fact that the source code was open and available. It could be examined, improved and
customised".

Page 142 of the same work states the following: "Pioneers like Henry Spencer agree on
how important it was to those in the Unix community to have the source code. He
notes how having the sources made it possible to identify and fix the bugs that they
discovered. [...] Even in the late 1970s and early 1980s, practically every Unix site had
complete sources ".

The text of Marc Rochkind "Interview with Dick Haight" is even more explicit(Unix Re-
view, May 1986) [198]: "that was one of the great things about Unix in the early days:
people actually shared each other's stuff. [...] Not only did we learn a lot in the old days
from sharing material, but we also never had to worry about how things really worked
because we always could go read the source."

Over time, Unix also became an early example of the problems that could

arise from private systems that at first sight "had some free software feature".

Towards the end of the 1970s and especially during the decade of the 1980s,

AT&T changed its policy and access to new versions of Unix became difficult

and expensive. The philosophy of the early years that had made Unix so po-

pular among developers, changed radically to such an extent that in 1991

AT&T even tried to sue the University of Berkeley for publishing the Unix BSD

code that Berkeley's CSRG had created. But this is another story that we will

pick up on later.

© FUOC • P07/M2101/02709 20 Free Software

2.2. The beginning: BSD, GNU

All of the cases discussed in the previous section were either individual initi-

atives or did not strictly comply with the requirements of free software. It was

not until the beginning of the 1980s that the first organised and conscious

projects to create systems comprising free software appeared. During that pe-

riod, the ethical, legal and even financial grounds of these projects started to

be established (probably more importantly), with them being developed and

completed right up to the present day. And since the new phenomenon nee-

ded a name, this was when the term free software was first minted.

2.2.1. Richard Stallman, GNU, FSF: the free software movement

is born

At the beginning of 1984, Richard Stallman, who at the time was employed

by the MIT AI Lab, abandoned his job to started working on the GNU project.

Stallman considered himself to be a hacker of the kind that enjoys sharing his

technological interests and his code. He didn't like the way that his refusal

to sign exclusivity or non-sharing agreements made him an outcast in his

own world, and how the use of private software in his environment left him

impotent in the face of situations that could easily be resolved before.

His idea when he left the MIT was to build a complete software system, for ge-

neral use, but totally free ("The GNU Project", DiBona et al.) [208]. The system

(and the project that would be responsible for making it come true) was called

GNU ("GNU's not Unix", recursive acronym). Although from the beginning

the GNU project included software in its system that was already available

(like TeX or, later, the X Window system), there was still a lot to be built. Ric-

hard Stallman started by writing a C compiler (GCC) and an editor (Emacs),

both of which are still in use today (and very popular).

From the start of the GNU project, Richard Stallman was concerned about the

freedoms that the software's users would have. He wanted not only those who

received programs directly from the GNU project to continue to enjoy the

same rights (modification, redistribution, etc.) but also those who received it

after any number of redistributions and (potentially) modifications. For this

reason he drafted the GPL licence, probably the first software licence designed

specifically in order to guarantee that a program would be free in this way.

Richard Stallman called the generic mechanism that these GPL type licences

use in order to achieve these guarantees, copyleft, which continues to be the

name of a large family of free software licences (Free Software Foundation,

GNU General Public Licence, version 2, June 1991) [118].

© FUOC • P07/M2101/02709 21 Free Software

Richard Stallman also founded the Free Software Foundation (FSF) in order

to obtain funds, which he uses to develop and protect free software, and es-

tablished his ethical principles with the "The GNU Manifesto" (Free Software

Foundation, 1985) [117] and "Why software should not have owners" (Richard

Stallman, 1998) [207].

From a technical point of view, the GNU project was conceived as a highly

structured task with very clear goals. The usual method was based on relati-

vely small groups of people (usually volunteers) developing one of the tools

that would then fit perfectly into the complete jigsaw (the GNU system). The

modularity of Unix, on which this project was inspired, fully coincided with

that idea. The method of working generally implied the use of Internet, but

because at that time it was not extensively implanted, the Free Software Foun-

dation would also sell tapes on which it would record the applications, which

means that it was probably one of the first organisations to obtain financial

compensation (albeit in a rather limited way) from creating free software.

In the early 90s, about six years after the project was founded, GNU was very

close to having a complete system similar to Unix. However, at that point it

had not yet produced one of the key parts: the system's core (also known as

the kernel, the part of the operating system that relates with the hardware, abs-

tracts it, and allows applications to share resources, and essentially, to work).

However, GNU software was very popular among the users of several different

variants of Unix, at the time the most commonly used operating system in

businesses. Additionally, the GNU project had managed to become relatively

well known among IT professionals, and especially among those working at

universities. In that period, its products already had a well-deserved reputati-

on for stability and good quality.

2.2.2. Berkeley's CSRG

Since 1973, the CSRG (Computer Science Research Group) of the University

of California, in Berkeley, had been one of the centres where the most Unix-

related developments had been made, especially during 1979 and 1980. Not

only were applications ported and other new ones built to function on Unix,

but also important improvements were made to the kernel and a lot of functi-

onality had been added. For example, during the 80s, several DARPA contracts

(under the US Ministry of Defence) financed the implementation of TCP/IP

which until today has been considered the reference for the protocols that

make the Internet work (in the process, linking the development of the In-

ternet and the expansion of Unix workstations). Many companies used the

CSRG's developments as the bases for their Unix versions giving rise to well-

known systems at the time, such as SunOS (Sun Microsystems) or Ultrix (Di-

gital Equipment). This is how Berkeley became one of the two fundamental

sources of Unix, together with the "official", AT&T.

© FUOC • P07/M2101/02709 22 Free Software

In order to use all of the code that the CSRG produced (and the code of the

collaborators of the Unix community which to some extent they coordina-

ted), it was necessary to have AT&T's Unix licence, which was becoming incre-

asingly difficult (and expensive) to obtain, especially if access to the system's

source code was required. Partly in an attempt to overcome this problem, in

June 1989 the CSRG liberated the part of Unix associated to TCP/IP (the im-

plementation of the protocols in the kernel and the utilities), which did not

include AT&T code. It was called the Networking Release 1 (Net-1). The licence

with which it was released was the famous BSD licence, which except for cer-

tain problems with its clauses on disclosure obligations, has always been con-

sidered an example of a minimalist free licence (which in addition to allowing

free redistribution, also allows incorporation into private products). In addi-

tion, the CSRG tested a novel financing model (which the FSF was already

trying out successfully): it sold tapes with its distribution for USD 1,000. Des-

pite the fact that anybody in turn could redistribute the content of the tapes

without any problem (because the licence allowed it), the CSRG sold tapes

to thousands of organisations thus obtaining funds with which to continue

developing.

Having witnessed the success of the Net-1 distribution, Keith Bostic proposed

to rewrite all of the code that still remained from the original AT&T Unix.

Despite the scepticism of some members of the CSRG, he made a public an-

nouncement asking for help to accomplish this task, and little by little the

utilities (rewritten on the basis of specifications) started coming in to Berke-

ley. Meanwhile, the same process was done with the kernel, in such a way

that most of the code that had not been produced by Berkeley or volunteer

collaborators was rewritten independently. In June 1991, after obtaining per-

mission from the University of Berkeley's governing body Networking Release 2

(Net-2) was distributed, with almost all of the kernel's code and all of the uti-

lities of a complete Unix system. The set was once again distributed under the

BSD licence and thousands of tapes were sold at a cost of USD 1,000 per unit.

Just six months after the release of Net-2, Bill Jolitz wrote the code that was

missing for the kernel to function on the i386 architecture, releasing 386BSD,

which was distributed over the Internet. On the basis of that code later emer-

ged, in succession, all the systems of the *BSD family: first NetBSD appeared,

as a compilation of the patches that had been contributed over the Net in

order to improve 386BSD; later FreeBSD appeared, as an attempt basically to

support the i386 architecture; several years later the OpenBSD project was for-

med, with an emphasis on security. And there was also a proprietary version

based on Net-2 (although it was certainly original, since it offered its clients

all the source code as part of the basic distribution), which was done indepen-

dently by the now extinct company BSDI (Berkeley Software Design Inc.).

Partly as a reaction to the distribution produced by BSDI, Unix System Labo-

ratories (USL), the AT&T subsidiary that held the Unix licence rights, tried to

sue first BSDI and then the University of California. The accusation was that

© FUOC • P07/M2101/02709 23 Free Software

the company had distributed its intellectual property without permission. Fo-

llowing various legal manoeuvres (which included a countersuit by the Uni-

versity of California against USL), Novell bought the Unix rights from USL,

and in January 1994 reached an out-of-court settlement with the University of

California. As a result of this settlement, the CSRG distributed version 4.4BSD-

Lite, which was soon used by all the projects of the *BSD family. Shortly af-

terwards (after releasing version 4.4BSD-Lite Release 2), the CSRG disappeared.

At that point, some feared that it would be the end of *BSD systems, but time

has shown that they are still alive and kicking under a new form of manage-

ment that is more typical of free software projects. Even in the first decade of

the year 2000 the projects managed by the *BSD family are among the oldest

and most consolidated in the world of free software.

Bibliography

The history of Unix BSD is illustrative of a peculiar way of developing software during
the seventies and eighties. Whoever is interested in it can enjoy reading "Twenty years of
Berkeley Unix" (Marshall Kirk McKusick, 1999) [170], which follows the evolution from
the tape that Bob Fabry took to Berkeley with the idea of making one of the first versions
of Thompson and Ritchie's code function on a PDP-11 (bought jointly by the faculties of
informatics, statistics and mathematics), through to the lawsuits filed by AT&T and the
latest releases of code that gave rise to the *BSD family of free operating systems.

2.2.3. The beginnings of the Internet

Almost since its creation in the decade of the 1970s, Internet has been closely

related to free software. On the one hand, since the beginning, the community

of developers that built the Internet had several clear principles that would

later become classics in the world of free software; for example, the importan-

ce of users being able to help fix bugs or share code. The importance of BSD

Unix in its development (by providing during the eighties the most popular

implementation of the TCP/IP protocols) made it easy to transfer many ha-

bits and ways of doing things from one community - the developers centred

around the CSRG - to another community - the developers who were buil-

ding what at the time was NSFNet and would later become Internet - and vice

versa. Many of the basic applications for the Internet's development, such as

Sendmail (mail server) or BIND (implementation of the name service) were

free and, to a great extent, the outcome of collaboration between these two

communities.

Finally, towards the end of the 80s and in the decade of the 90s, the free softwa-

re community was one of the first to explore in-depth the new possibilities

offered by the Internet for geographically disperse groups to collaborate. To a

large extent, this exploration made the mere existence of the BSD community

possible, the FSF or the development of GNU/Linux.

One of the most interesting aspects of the Internet's development, from the

free software point of view, was the completely open management of its do-

cuments and its rules. Although it may seem normal today (because it is cus-

tomary, for example, in the IETF or the World Wide Web Consortium), at the

© FUOC • P07/M2101/02709 24 Free Software

time, the free availability of all its specifications, and design documents inclu-

ding the norms that define the protocols, was something revolutionary and

fundamental for its development. In Netizens. On the history and impact of Use-

net and the Internet [139] (page 106) we can read:

"This open process encouraged and led to the exchange of information. Technical deve-
lopment is only successful when information is allowed to flow freely and easily betwe-
en the parties involved. Encouraging participation is the main principle that made the
development of the Net possible."

We can see why this paragraph would almost certainly be supported by any

developer referring to the free software project in which he is involved.

In another quote, on "The evolution of packet switching" [195] (page 267) we

can read:

"Since ARPANET was a public project connecting many major universities and research
institutions, the implementation and performance details were widely published."

Obviously, this is what tends to happen with free software projects, where all

the information related to a project (and not only to its implementation) is

normally public.

In this atmosphere, and before the Internet, well into the nineties, became

an entire business, the community of users and its relationship with develo-

pers was crucial. During that period many organisations learned to trust not a

single supplier of data communication services, but rather a complex combi-

nation of service companies, equipment manufacturers, professional develo-

pers, and volunteers, etc. The best implementations of many programs were

not those than came with the operating system purchased together with the

hardware, but rather free implementations that would quickly replace them.

The most innovative developments were not the outcome of large company

research plans but rather the product of students or professionals who tested

ideas and collected feedback sent to them by various users of their free pro-

grams.

As we have already mentioned, Internet also offered free software the basic to-

ols for long-distance collaboration. Electronic mail, news groups, anonymous

FTP services (which were the first massive stores of free software) and, later, the

web-based integrated development systems have been fundamental (and in-

dispensable) for the development of the free software community as we know

it today, and in particular, for the functioning of the immense majority of free

software projects. From the outset, projects such as GNU or BSD made massive

and intensive use of all these mechanisms, developing, at the same time as

they used them, new tools and systems that in turn improved the Internet.

Bibliography

Readers interested in the
evolution of the Internet,
written by several of its key
protagonists, can consult
"A brief history of the Inter-
net" (published by the ACM,
1997) [166].

© FUOC • P07/M2101/02709 25 Free Software

2.2.4. Other projects

During the 1980s many other important free software projects saw the light of

day. We would highlight for their importance and future relevance, X Window

(windows system for Unix-type systems), developed at the MIT, one of the

first examples of large-scale funding for a free project financed by a business

consortium. It is also worth mentioning Ghostscript, a PostScript document

management system developed by a company called Aladdin Software, which

was one of the first cases of searching for a business model based on producing

free software.

Towards the end of the 1980s, there was already an entire constellation of

small (and not so small) free software projects underway. All of them, together

with the large projects we have mentioned up until now, established the bases

of the first complete free systems, which appeared in the beginning of the

1990s.

2.3. All systems go

Around 1990, most of the components of a complete system were ready as free

software. On the one hand, the GNU project and the BSD distributions had

completed most of the applications that make up an operating system. On the

other hand, projects such as X Window or GNU itself had built from windows

environments to compilers, which were often among the best in their class

(for example, many administrators of SunOS or Ultrix systems would replace

their system's private applications for the free versions of GNU or BSD for their

users). In order to have a complete system built exclusively with free software,

just one component was missing: the kernel. Two separate and independent

efforts came to fill the gap: 386BSD and Linux.

2.3.1. The search for a kernel

Towards the end of the 1980s and beginning of the 1990s, the GNU project

had a basic range of utilities and tools that made it possible to have a complete

operating system. Even at the time, many free applications, including the par-

ticularly interesting case of X Window, were the best in their field (Unix utili-

ties, compilers...). However, to complete the jigsaw a vital piece was missing:

the operating system's kernel. The GNU project was looking for that missing

piece with a project known as Hurd, which intended to build a kernel using

modern technologies.

2.3.2. The *BSD family

Practically at the same time, the BSD community was also on the path towards

a free kernel. The Net-2 distribution was only missing six files in order to com-

plete it (the rest had already been built by the CSRG or its collaborators). In

the beginning of 1992, Bill Jolitz finished those files and distributed 386BSD,

© FUOC • P07/M2101/02709 26 Free Software

a system that functioned on the i386 architecture and that in time would give

rise to the projects NetBSD, FreeBSD and OpenBSD. Progress in the following

months was fast, and by the end of the year it was sufficiently stable to be

used in non-critical production environments, which included, for example,

a windows environment thanks to the XFree project (which had provided X

Window for the i386 architecture) or a great quality compiler, GCC. Although

there were components that used other licences (such as those from the GNU

projects, which used the GPL), most of the system was distributed under the

BSD licence.

Bibliography

Some episodes of this period illustrate the capability of the free software development
models. There is the well-known case of Linus Torvalds, who developed Linux while a
second-year student at the University of Helsinki. But this is not the only case of a student
who made his way thanks to his free developments. For example, the German Thomas
Roel ported X11R4 (a version of the X Window system) to a PC based on a 386. This
development took him to work at Dell, and later to become the founder of the X386 and
XFree projects, which were fundamental for quickly giving GNU/Linux and the *BSDs a
windows environment. You can read more about the history of XFree and Roel's role in
it in "The history of xFree86" (Linux Magazine, December 1991) [135].

Then came the lawsuit from USL, which made many potential users fear pro-

ceedings against them in turn if the University of California were to lose the

court case or simply, for the project to come to a standstill. Perhaps this was

the reason why later, the base of GNU/Linux installations was much greater

than all the *BSDs combined. But we cannot know this for sure.

2.3.3. GNU/Linux comes onstage

In July 1991 Linus Torvalds (a Finnish 21-year old student) placed his first

message mentioning his project (at the time) to build a free system similar

to Minix. In September he released the very first version (0.01), and every

few weeks new versions would appear. In March 1994 version 1.0 appeared,

the first one to be called stable, though the kernel that Linus built had been

usable for several months. During this period, literally hundreds of developers

turned to Linux, integrating all the GNU software around it, as well as XFree

and many more free programs. Unlike the *BSDs, the Linux kernel and a large

number of the components integrated around it were distributed with the GPL

licence.

Bibliography

The story about Linux is probably one of the most interesting (and well-known) in
the world of free software. You can find many links to information on it from the
pages marking the 10th anniversary of its announcement, although probably one of
the most interesting ones is the "History of Linux", by Ragib Hasan [138]. As a curio-
sity, you can consult the thread on which Linus Torvalds announced that he was star-
ting to create what later became Linux (in the newsgroup comp.os.minix) at http://
groups.google.com/groups?th=d161e94858c4c0b9. There he explains how he has been
working on his kernel since April and how he has already ported some GNU project tools
onto it (specifically mentioning Bash and GCC).

http://groups.google.com/groups?th=d161e94858c4c0b9
http://groups.google.com/groups?th=d161e94858c4c0b9

© FUOC • P07/M2101/02709 27 Free Software

Of the many developments to have emerged around Linux, one of the most

interesting is the distribution concept1. The first distributions appeared soon,

in 1992 (MCC Interim Linux, of the University of Manchester; TAMU, of Te-

xas A&M, and the most well-known, SLS, which later gave rise to Slackware,

which is still being distributed in the first decade of 2000), entailing the arrival

of competition into the world of systems packaged around Linux. Each distri-

bution tries to offer a ready-to-use GNU/Linux, and starting from the basis of

the same software has to compete by making improvements considered im-

portant by their user base. In addition to providing pre-compiled ready-to-use

packages, the distributions also tend to offer their own tools for managing the

select, install, replace and uninstall functions of these packages, in addition

to the initial installation on the computer, and the management and admi-

nistration of the operating system.

Over time distributions have succeeded each other as different ones became

the most popular. Of them all, we would highlight the following:

1) Debian, developed by a community of volunteer users.

2) Red Hat Linux, which was first developed internally by the company Red

Hat, but which later adopted a more community-based model, giving rise

to Fedora Core.

3) Suse, which gave rise to OpenSUSE, following a similar evolution to Red

Hat.

4) Mandriva (successor of Mandrake Linux and Conectiva).

5) Ubuntu, derived from Debian and produced on the basis of Debian by the

company Canonical.

2.4. A time of maturation

Midway through the first decade of 2000, GNU/Linux, OpenOffice.org or Fi-

refox were present in the media quite often. The overwhelming majority of

companies use free software for at least some of their IT processes. It is difficult

to be an IT student and not to use large amounts of free software. Free software

is no longer a footnote in the history of IT and has become something very

important for the sector. IT companies, companies in the secondary sector

(the ones that use software intensively, even though their primary activity is

different) and public administrations are starting to consider it as something

strategic. And slowly but surely it is arriving among domestic users. In broad

terms, we are entering a period of maturation.

(1)This concept is explained in de-
tail in the corresponding entry in
Wikipedia, www.wikipedia.org/
wiki/Linux_distribution

http://www.wikipedia.org/wiki/Linux_distribution
http://www.wikipedia.org/wiki/Linux_distribution

© FUOC • P07/M2101/02709 28 Free Software

And at the bottom of it all, an important question starts to arise, which sum-

marises in a way what is happening: "are we facing a new model of software

industry?". Perhaps, it may yet happen that free software becomes no more

than a passing trend to be remembered nostalgically one day. But it may also

be (and this seems increasingly likely) a new model that is here to stay, and

perhaps to change radically one of the youngest but also most influential in-

dustries of our time.

2.4.1. End of the nineties

In the mid-1990s, free software already offered complete environments (dis-

tributions of GNU/Linux, *BSD systems...) that supported the daily work of

many people, especially software developers. There were still many pending

assignments (the main one to have better graphical user interfaces at a time

when Windows 95 was considered the standard), but there were already seve-

ral thousand people worldwide who used exclusively free software for their

day to day work. New projects were announced in rapid succession and free

software embarked on its long path towards companies, the media and, public

awareness, in general.

This period is also associated with Internet taking off as a network for everyo-

ne, in many cases led by the hand of free programs (especially in its infrastruc-

ture). The net's arrival into the homes of millions of end users consolidated

this situation, at least in terms of servers: the most popular web servers (HTTP)

have always been free (first the NCSA server, followed by Apache).

Perhaps the beginning of the road for free software until its full release among

the public is best described in the renowned essay by Eric Raymond, "The cat-

hedral and the bazaar" (Eric S. Raymond, 2001) [192]. Although much of what

is described in it was already well known by the community of free software

developers, putting it into an article and distributing it extensively made it

an influential tool for promoting the concept of free software as an alternative

development mechanism to the one used by the traditional software industry.

Another important article of this period was "Setting up shop. The Business of

open source software" [141], by Frank Hecker, which for the first time descri-

bed the potential business models for free software, and which was written in

order to influence the decision to release the Netscape Navigator code.

Whereas Raymond's article was a great tool for promoting some of the funda-

mental characteristics of free software, the release of Netscape Navigator's co-

de was the first case in which a relatively large company, in a very innovative

sector (the then nascent web industry) made the decision to release one of its

products as free software. At that time, Netscape Navigator was losing the web

navigators' battle against Microsoft's product (Internet Explorer), partly due

to Microsoft's tactics of combining it with its operating system. Many people

believe that Netscape did the only thing that it could have done: to try to

change the rules to be able to compete with a giant. And from this change in

© FUOC • P07/M2101/02709 29 Free Software

the rules (trying to compete with a free software model) the Mozilla project

was born. This project, which had its own problems, has led several years later

to a navigator that, although it has not recovered the enormous market share

that Netscape had in its day, seems technically at least as good as its private

competitors.

In any case, irrespective of its later success, Netscape's announcement that it

would release its navigator's code had a great impact on the software industry.

Many companies started to consider free software worthy of consideration.

The financial markets also started paying attention to free software. In the

euphoria of the dotcom boom, many free software companies became targets

for investors. Perhaps the most renowned case is that of Red Hat, one of the

first companies to recognise that selling CDs with ready-to-use GNU/Linux

systems could be a potential business model. Red Hat started distributing its

Red Hat Linux, with huge emphasis (at least for what was common at the

time) on the system's ease of use and ease of maintenance for people without

a specific IT background. Over time it diversified, keeping within the orbit of

free software, and in September 1998 it announced that Intel and Netscape

had invested in it. "If it is good for Intel and Netscape, it must be good for us",

is what many investors must have thought then. When Red Hat went public in

summer 1999, the IPO was subscribed completely and soon the value of each

share rose spectacularly. It was the first time that a company was obtaining

financing from the stock exchange with a model based on free software. But

it was not the only one: later others such as VA Linux or Andover.net (which

was later acquired by VA Linux) did the same.

Note

Red Hat provides a list of its company milestones at http://fedora.redhat.com/about/his-
tory/.

During this period, many companies were also born with business models

based on free software. Despite not going public or achieving such tremendous

market caps, they were nevertheless very important for the development of

free software. For example, many companies appeared that started distributing

their own versions of GNU/Linux, such as SuSE (Germany), Conectiva (Brazil)

or Mandrake (France), which would later join the former in order to create

Mandriva. Others offered services to companies that wanted maintenance or

to adapt free products: LinuxCare (US), Alcove (France), ID Pro (Germany);

and many more.

Meanwhile, the sector's giants started to position themselves in relation to

free software. Some companies, such as IBM, incorporated it directly into their

strategy. Others, such as Sun Microsystems, had a curious relationship with it,

at times backing it, at others indifferent, and at others confrontational. Most

(such as Apple, Oracle, HP, SGI, etc.) explored the free software model with

various strategies, ranging from the selective freeing of software to straight-

http://fedora.redhat.com/about/history/
http://fedora.redhat.com/about/history/

© FUOC • P07/M2101/02709 30 Free Software

forward porting of their products to GNU/Linux. Between these two extremes

there were many other lines of action, such as the more or less intensive use

of free software in their products (such as the case with Mac OS X) or the ex-

ploration of business models based on the maintenance of free products.

From the technical point of view, the most remarkable event of this peri-

od was probably the appearance of two ambitious projects designed to carry

free software to the desktop environment for inexperienced IT users: KDE and

GNOME. Put simplistically, the final objective was not to have to use the com-

mand line in order to interact with GNU/Linux or *BSD or with the programs

on those environments.

KDE was announced in October 1996. Using the Qt graphic libraries (at that

time a private product belonging to the company Trolltech, but free of charge

for use on GNU/Linux2), construction began of a set of desktop applications

that would work in an integrated manner and have a uniform appearance. In

July 1998 version 1.0 of the K Desktop Environment was released, and was

soon followed by increasingly more complete and more mature new versions.

GNU/Linux distributions soon incorporated KDE as a desktop for their users

(or at least as one of the desktop environments that users could choose).

Mostly as a reaction to KDE's dependence on the Qt private library, in August

1997 the GNOME project was announced (Miguel de Icaza, "The story of the

GNOME Project") [101], with similar goals and characteristics to those of KDE,

but stating the explicit objective of all its components being free. In March

1999, GNOME 1.0 was released, which would also improve and stabilise over

time. As of that moment, most distributions of free operating systems (and

many Unix-derived private ones) offered the GNOME or KDE desktop as an

option and the applications of both environments.

Meanwhile, the main free software projects underway remained in good he-

alth with new projects emerging almost every day. In various niche markets,

free software was found to be the best solution (acknowledged almost worldwi-

de). For example, since its appearance in April 1995, Apache has maintained

the largest market share for web servers; XFree86, the free project that deve-

lops X Window, is by far the most popular version of X Window (and therefo-

re, the most extended windows system for Unix-type systems); GCC is recog-

nised as the most portable C compiler and one of the best quality; GNAT, the

compilation system for Ada 95, has conquered the best part of the market for

Ada compilers in just a few years; and so on.

In 1998, the Open Source Initiative (OSI) was founded, which decided to

adopt the term open source software as a brand for introducing free softwa-

re into the business world, while avoiding the ambiguity of the term free

(which can mean both free to use and free of charge). This decision sparked

one of the fiercest debates in the world of free software (which continues to

this day), since the Free Software Foundation and others considered that it

(2)Later, Qt started to be distri-
buted under the free licence QPL
(Qt Public Licence), non-compa-
tible with GPL, which caused so-
me problems, since most of KDE
was distributed under the GPL. In
time, Trolltech finally decided to
distribute Qt under the GPL licen-
ce, bringing these problems to an
end.

© FUOC • P07/M2101/02709 31 Free Software

was much more appropriate to speak about free software (Richard Stallman,

"Why free software is better than open source", 1998) [206]. In any case, the

OSI made a great promotional campaign for its new brand, which has be-

en adopted by many as the preferred way to talk about free software, espe-

cially in the English-speaking world. To define open source software, the OSI

used a definition derived from the one used by the Debian project to defi-

ne free software ("Debian free software guidelines", http://www.debian.org/

social_contract.html#guidelines) [104], which at the same time fairly closely

reflects the idea of the FSF in this regard ("Free software definition", http://

www.gnu.org/philosophy/free-sw.html) [120], meaning that from the practi-

cal point of view almost any program considered free software can also be

considered open source and vice versa. However, the free software and open

source software communities (or at least the people who identify with them)

can be very different.

2.4.2. Decade of 2000

In the early years of the decade of 2000 free software was already a serious

competitor in the servers segment and was starting to be ready for the desktop.

Systems such as GNOME, KDE, OpenOffice.org and Mozilla Firefox can be

used by domestic users and are sufficient for the needs of many companies,

at least where office applications are concerned. Free systems (and especially

systems based on Linux) are easy to install, and the complexity of maintaining

and updating them is comparable to that of other private systems.

Right now, every company in the software industry has a strategy with regards

to free software. Most of the leading multinationals (IBM, HP, Sun, Novell,

Apple, Oracle...) incorporate free software to a greater or lesser extent. At one

extreme we can find companies such as Oracle, which react by simply porting

their products to GNU/Linux. At another extreme, we can find IBM, which

has the most decisive strategy and has made the biggest publicity campaigns

about GNU/Linux. Among the leaders in the IT market, only Microsoft has

positioned itself in clear opposition to free software and particularly software

distributed under the GPL licence.

As regards the world of free software itself, despite the debates that occasio-

nally stir the community, its growth is massive. Every day there are more de-

velopers, more active free software projects, more users, etc. With each passing

day free software is moving away from the sidelines and becoming a force to

be reckoned with.

In light of this, new disciplines are emerging that specifically study free softwa-

re, such as free software engineering. Based on research, bit by bit we are star-

ting to understand how free software operates in its various aspects: develop-

ment models, business models, coordination mechanisms, free project mana-

gement, developers' motivations, etc.

http://www.debian.org/social_contract.html
http://www.debian.org/social_contract.html
http://www.gnu.org/philosophy/free-sw.html
http://www.gnu.org/philosophy/free-sw.html

© FUOC • P07/M2101/02709 32 Free Software

These years we are also starting to see the first effects of the offshoring that free

software development allows: countries considered "peripheral" are actively

participating in the world of free software. For example, the number of Mexi-

can or Spanish developers (both countries with a limited tradition of software

industry) in projects such as GNOME is significant (Lancashire, "Code, cultu-

re and cash: the fading altruism of open source development", 2001) [164].

And the role of Brazil is even more interesting, with is numerous developers

and experts in free software technologies, and decisive backing from the pu-

blic administrations. gnuLinEx is a case that merits special attention, as an

example of how a region with very little tradition of software development

can try to change the situation through an aggressive strategy of free software

implantation.

From the decision-making perspective when it comes to implementing softwa-

re solutions, we would highlight the fact that there are certain markets (such

as Internet services or office applications) in which free software is a natural

choice that cannot be overlooked when studying what type of system to use.

On the negative front, these years have seen how the legal environment in

which free software operates is changing rapidly worldwide. On the one hand,

software patents (programming patents) are increasingly adopted in more and

more countries. On the other hand, new copyright laws make it difficult or

impossible to develop free applications in some spheres, the most well-known

one being DVD viewers (due to the CSS blur algorithm for images that this

technology uses).

gnuLinEx

In the beginning of 2002 the Extremadura Regional Government publicly an-

nounced the gnuLinEx project. The idea was simple: to promote the creation

of a distribution based on GNU/Linux with the fundamental objective of using

it on the thousands of computers to be installed in public schools throughout

the region. Extremadura, situated in the western part of Spain, bordering Por-

tugal, has approximately 1 million inhabitants and has never stood out for

its technological initiatives. In fact, the region had practically no software in-

dustry.

In this context, gnuLinEx has made a very interesting contribution to the free

software panorama on a global scale. Beyond being just a new distribution of

GNU/Linux based on Debian (which is still a worthy anecdote), and beyond

its enormous impact on the mass media (it was the first time that Extrema-

dura made the front cover of The Washington Post and one of the first that a

free software product did), what is extraordinary is the (at least apparently)

solid backing of a public administration for free software. The Regional Go-

vernment of Extremadura decided to try a different model where educational

software was concerned, and then to extend this model to all the software

used within the scope of its influence. This has made it the first public admi-

© FUOC • P07/M2101/02709 33 Free Software

nistration of a developed country to have decisively adopted this approach.

A lot of interest was generated around the Regional Government's initiative,

within Extremadura and outside of it: there are academies that teach IT using

gnuLinEx; books have been written to support this teaching; computers are

being sold with gnuLinEx pre-installed. In general, they are trying to create

an educational and business fabric around this experience in order to give it

support. And the experience has been exported. At the beginning of the 21st

century several autonomous communities in Spain have backed free software

in education (in one way or another), and in general, its importance for public

administrations is widely acknowledged.

Knoppix

Since the end of the nineties, there are GNU/Linux distributions that can be

easily installed, but Knoppix, whose first version appeared in 2002, has pro-

bably allowed this idea to reach its full expression. It is a CD that boots on

almost any PC, converting it (without even having to format the disk, since it

can be used "live") into a fully functional GNU/Linux machine, with a selec-

tion of the most frequent tools. Knoppix combines good automatic hardware

detection with a good choice of programs and "live" functioning. For example,

it allows a rapid and direct experience of what it means to work with GNU/Li-

nux. And it is giving rise to an entire family of distributions of the same type,

specialised for the specific requirements of a user profile.

OpenOffice.org

In 1999, Sun Microsystems bought a German company called Stardivision,

whose star product was StarOffice, a suite of office applications similar in

functionality to the Microsoft Office set of tools. One year later, Sun distribu-

ted most of the StarOffice code under a free licence (the GPL) creating the

OpenOffice.org project. This project released version 1.0 of OpenOffice.org

in May 2002. OpenOffice.org has become a quality suite of office applicati-

ons with a similar functionality to that of any other office product, and, mo-

re importantly, it interoperates very well with the Microsoft Office data for-

mats. These features have made it the reference free software application in

the world of office suites.

The importance of OpenOffice.org, from the point of view of extending free

software to a large number of users, is enormous. Finally it is possible to

change, almost without any trauma, from the private environments common

with office suites (undoubtedly the star application in the business world)

to totally free environments (such as GNU/Linux plus GNOME and/or KDE

plus OpenOffice.org). Also, the transition can be made very smoothly: since

OpenOffice.org also works on Microsoft Windows, it is not necessary to chan-

ge operating systems in order to experiment in depth with using free software.

© FUOC • P07/M2101/02709 34 Free Software

Mozilla, Firefox and the rest

Practically since its appearance in 1994 until 1996, Netscape Navigator was

the unchallenged market leader in web navigators, with market shares of up

to 80%. The situation started to change when Microsoft included Internet Ex-

plorer with Windows 95, causing Netscape Navigator to gradually lose market

share. At the beginning of 1998 Netscape announced that it was going to dis-

tribute a large part of its navigator code as free software, which it did in March

that same year, launching the Mozilla project. For quite a while the project

was clouded by uncertainty, and even pessimism (for example, when its lea-

der, Jamie Zawinski, abandoned it), because as time went by no product was

resulting from its launch.

In January 2000, the project released Mozilla M13, which was considered the

first relatively stable version. But in just May 2002 version 1.0 was finally pu-

blished, the first officially stable version, over four years after the first Netsca-

pe Navigator code had been released.

Finally Mozilla had become a reality, although perhaps too late, if we bear in

mind the market shares that Internet Explorer had in 2002 or 2003 (when it

was the undisputed leader leaving Mozilla and others in a totally marginal

position). But despite taking so long, the Mozilla project has borne fruit; not

only expected fruit (the Mozilla navigator), but also other "collateral" ones,

such as Firefox for example, another navigator based on the same HTML en-

gine, which has become the main product, and which since it appeared in

2005 is managing bit by bit to erode other navigators' market share.

The Mozilla project has helped to fill a large gap in the world of free softwa-

re. Before Konqueror appeared (the KDE project's navigator), there were not

many free navigators with a graphic interface. Since the publication of Mozi-

lla, an enormous number of projects based on it have emerged, which have

produced a large number of navigators. At the same time, the combination

of Mozilla Firefox and OpenOffice.org allows free software to be used for the

most common tasks, even in a Microsoft Windows environment (they both

work not only on GNU/Linux, *BSD and other Unix-type systems, but also

on Windows). For the first time in the history of free software, it has made

the transition from private software to free software in office environments

a simple task: we can start by using these two applications on Windows, wit-

hout changing operating systems (for those who use it normally), and over

time eliminate the only non-free part and move onto GNU/Linux or FreeBSD.

The case of SCO

At the beginning of 2003, the SCO corporation (formerly Caldera Systems and

Caldera International) presented a legal case against IBM for alleged breach

of its intellectual property rights. Although the case was complex, it centred

on the accusation that IBM had contributed to the Linux kernel with code

Bibliography

In "Netscape Navigator", by
Brian Wilson, [234], we can
consult a detailed list of the
main versions of Netscape
Navigator and Mozilla, and
their main characteristics.

© FUOC • P07/M2101/02709 35 Free Software

belonging to SCO. In May 2007, the matter had still not been resolved and had

even become more complicated by further legal suits (IBM and Red Hat against

SCO, SCO against AutoZone and DaimlerChrysler, two large IT users) and by

SCO's campaigns threatening to pursue big companies that used Linux, etc.

Although the winner of this enormous legal battle has still not emerged, the

case has highlighted certain legal aspects concerning free software. In particu-

lar, many companies have considered the problems that they may have to face

if they use Linux and other free programs, and the guarantee that in doing so

they are not in breach of third party intellectual or industrial property rights.

In some way, this case and other ones (such as those related to the validity

of the GPL licences which were resolved in Germany in 2005) may also be

interpreted as a sign of the maturity of free software. It has stopped being a

stranger to the business world to become part of many of its activities (inclu-

ding those related to legal strategies).

Ubuntu, Canonical, Fedora and Red Hat

Although Canonical (the company that produces and distributes Ubuntu)

could be considered a recent arrival to the business of GNU/Linux distributi-

ons, its activities deserve our attention. In a relatively short time, Ubuntu has

established itself as one of the best known and most widely used distributi-

ons, with a reputation for good quality, and great ease of installation and use.

Ubuntu also stands out for its greater attention to including fundamentally

free software than most distributions produced by companies.

However, the probably fundamental characteristic of Ubuntu (and of

Canonical's strategy) has been to base itself on Debian, a distribution created

and maintained by volunteers. In fact, Ubuntu is not the first case of a distri-

bution based on Debian (another well-known case is gnuLinEx), but perhaps

it is the one to have received the most funding. For example, Canonical has

hired a large number of Debian experts (many of whom participate in the pro-

ject) and has pursued a strategy that seeks collaboration with the volunteer

project. To some extent, Canonical has tried to fill what it considers is missing

from Debian in order to gain acceptance from the average user.

Red Hat, in turn, has followed a different path in order to wind up in a fairly

similar situation. Starting from a distribution produced entirely with its own

resources, it decided to collaborate with Fedora, a group of volunteers that

was already working with distributions based on Red Hat, in order to produ-

ce Fedora Core, its "popular" distribution. Red Hat maintains its version for

companies, but this collaboration with volunteers is, in the end, very similar

to the one that has produced Ubuntu.

© FUOC • P07/M2101/02709 36 Free Software

Perhaps all of these movements are no more than the product of the fierce

competition taking place in the market for GNU/Linux distributions and of

one more notable trend: companies' collaboration with volunteers (with the

community) to produce free software.

Customised distributions

Since Linux came onto the scene, a large number of groups and companies

have created their own distributions based on it. But during these years, the

phenomenon has caught on with many organisations and companies that

want customised versions for their own requirements. Customisation has be-

en able to expand because the process has become cheaper and there is wi-

despread availability of the technical knowledge to do so, even making this a

niche market for certain companies.

Perhaps one of the best known cases of customised distributions is the one for

Spain's autonomous communities. The Extremadura Regional Government

with its gnuLinEx sparked a trend that many other autonomous communities

have since followed. The process is so common that several of them regularly

convene tenders for the creation and maintenance of new versions of their

distributions.

The creation of customised distributions realises a trend that the world of free

software had been discussing for a long time: adapting programs to users' spe-

cific needs without it having to be the original producers that necessarily make

the adaptation.

Bibliography

Some of the most well-known distributions of GNU/Linux in the autonomous commu-
nities include:

• gnuLinEx: http://linex.org (Extremadura)

• Guadalinex: http://guadalinex.org (Andalucía)

• Lliurex: http://lliurex.net (Comunidad Valenciana)

• Augustux: http://www.zaralinux.org/proy/augustux/ (Aragón)

• MAX: http://www.educa.madrid.org/web/madrid_linux/ (Madrid)

• MoLinux: http://molinux.info (Castilla-La Mancha)

Company-company and volunteer-company collaborations

Since practically the beginning of free software, there have been compani-

es that collaborated with volunteers in developing applications. However, in

these years when it appears that we are reaching maturity there is a growing

number of companies that use free software as part of their strategy to colla-

borate with other companies, when they find it interesting. Two of the most

significant cases, organised specifically with this objective, are ObjectWeb (an

alliance formed in France which over time clearly has clearly become interna-

http://linex.org/
http://guadalinex.org/
http://lliurex.net/
http://www.zaralinux.org/proy/augustux/
http://www.educa.madrid.org/web/madrid_linux/
http://molinux.info/

© FUOC • P07/M2101/02709 37 Free Software

tional) and Morfeo (in Spain). In both cases, a group of companies has agreed

to develop a set of free systems that are of interest to them, and decided to

distribute it as free software.

In other cases, companies have actively sought to collaborate in free pro-

jects promoted by volunteers, or tried to make volunteers collaborate with

their own free projects. The GNOME Foundation or the already-mentioned

Ubuntu in respect of Debian are examples of this first scenario. Sun and

OpenOffice.org and OpenSolaris, or Red Hat with Fedora Core, are examples

of the second.

Expanding to other spheres

Free software has proven that in the field of producing programs there is anot-

her way of doing things. In practice, we have seen how granting the freedom

to distribute, modify and use can achieve sustainability, either through volun-

teer work, or through business generation that allows companies to survive.

As time passes, this same idea is being transferred to other spheres of intellec-

tual work. The Creative Commons licences have made it possible to free sp-

heres such as literature, music, or video. Wikipedia is proving that a field as

particular as the production of encyclopaedias can travel a very interesting

path. And there are more and more literary authors, music bands and even

film producers interested in models of free production and distribution.

In all these domains there is still a long way to go, and in almost all of them

practice has not yet fully proven that sustainable creation is possible with free

models. But we cannot deny that experimentation with it is reaching a boiling

point.

Free software as a subject of study

Although some works, such as the renowned "The cathedral and the bazaar"

cleared the way for the study of free software as such, it was not until 2001

and subsequent years that the academic community started to consider free

software as something worthy of study. Over time, the massive availability of

data (almost everything in the world of free software is public and available

from public information archives) and the innovations that free software has

provided have drawn the attention of many groups. Midway through the de-

cade of 2000 there are already several international conferences centred speci-

fically on free software, top-ranking magazines frequently produce articles on

it, and research-funding agencies are opening lines aimed specifically towards

it.

© FUOC • P07/M2101/02709 38 Free Software

2.5. The future: an obstacle course?

Of course, it is difficult to predict the future. And that is certainly not our ob-

jective. Therefore, rather than trying to explain what the future of free softwa-

re will be like, we will try to show the problems that it will foreseeably have

to face (and has indeed been facing for a long time). How the world of free

software is able to overcome these obstacles will undoubtedly determine its

situation in several years' time.

• FUD Technique (fear, uncertainty, doubt. This is a fairly common technique

in the world of information technologies, used by free software's compe-

titors in order to discredit free software, with more or less justification

and varying degrees success. In general terms, free software has been fairly

immune to these techniques, perhaps due to its complexity and different

ways of seeping into companies.

• Dissolution. Many companies are testing the limits of free software as a

model, and in particular are trying to offer their clients models that pre-

sent some similar characteristics to free software. The main problem that

can present itself with this type of model is that it generates confusion

among clients and developers, who need to read the small print in detail

in order to realise that what they are being offered does not have the ad-

vantages that free software offers them. The most well-known model of

this type is the Shared Source program, by Microsoft.

• Lack of knowledge. In many cases, users turn to free software simply be-

cause they think that it is free of charge; or because they think that it is

"fashionable ". If they do not look deeper into it, and study with a certain

amount of detail the advantages that free software can offer as a model,

they run the risk of not taking full advantage of them. In many cases, the

initial assumptions in the world of free software are so different from the

traditional ones in the world of private software that a minimum analysis

is required in order to understand that what in one case is frequent in the

other may be impossible, and vice versa. Therefore, lack of knowledge can

only generate dissatisfaction and loss of opportunities for any person or

organisation approaching free software.

• Legal obstacles. This is certainly the main problem that free software is

going to have to deal with in coming years. Although the legal environ-

ment in which free software developed in the 80s and first half of the

90s was not ideal, at least it left enough space for it to grow freely. Since

then, extension of the scope of patenting to software (which has occurred

in many developed countries) and new copyright legislation (limiting the

software developer's liberty to create) are producing increasingly higher

barriers to free software's entry into important segments of applications.

© FUOC • P07/M2101/02709 39 Free Software

2.6. Summary

This chapter presents the history of free software. The seventies was a period

dominated by large computers and IBM in which software was distributed to-

gether with the hardware, and usually with the source code. In the seventies

software started to be sold separately, and soon private distributions, which

did not include source code and did not give permission to modify or redis-

tribute, became almost the only option.

In the decade of the 1970s work began on developing the Unix operating

system at AT&T's Bell Labs, giving rise later to Unix BSD. Its evolution, in

parallel with the birth of the Internet, served as a testing field for new ways

of developing in collaboration, which later became common in the world of

free software.

In 1984, Richard Stallman started to work on the GNU project, founding the

Free Software Foundation (FSF), writing the GPL licence, and in general esta-

blishing the foundations of free software as we now know it.

In the 90s Internet matured offering free software communities new channels

for communication and distribution. In 1991, Linus Torvalds started to deve-

lop a free kernel (Linux) which helped to complete the GNU system, which

already had almost all the parts for becoming a complete system similar to

Unix: C compiler (GCC), editor (Emacs), windows system (X Window), etc.

This is how the GNU/Linux operating systems were born, branching out into

many distributions, such as Red Hat Linux and Debian GNU/Linux. Towards

the end of the 90s, these systems were completed with two desktop environ-

ments: KDE and GNOME.

In the decade of 2000 free software managed to lead in some sectors (such as

for web servers, dominated by Apache), and new tools appeared covering a

large number of IT requirements.

See also

Interested readers will find in
Appendix B a list of some of
the most relevant dates in the
history of free software.

© FUOC • P07/M2101/02709 40 Free Software

3. Legal aspects

"The licences for most software are designed to take away your freedom to share and
change it."

GNU General Public Licence, version 2

This chapter looks at the main legal aspects related to free software. To put

them into context, we start with a small introduction to the most basic con-

cepts of intellectual and industrial property rights, before offering the detailed

definition of free software, open source software and other related concepts. We

also look in some detail at the most common free software licences and their

impact on business models (subject covered in greater detail in chapter 5) and

development models.

3.1. Brief introduction to intellectual property

The term intellectual property has various meanings according to its context

and who uses it. Nowadays it is frequently used in many spheres to refer to

various privileges awarded over intangible property with an economic value.

It includes concepts such as copyright and similar, which protect literary or

artistic works from unauthorised copy, computer programs, data compilati-

ons, industrial designs, etc.; trademarks, which protect symbols; geographical

terms, which protect denominations of origin; industrial secrets, which allow

the hiding of information, and patents, which concede temporary monopo-

lies to inventions in exchange for their revelation. However, in many legal

traditions, including the Hispanic tradition, a distinction is made between in-

tellectual property, which refers exclusively to copyright, and industrial property,

which covers the other concepts.

In any case, the legislation applicable to all of these aspects is one of the best

coordinated practically worldwide. On the one hand, the WIPO (Worldwide

International Property Organisation) covers both types of property in all of

their aspects. On the other hand, the TRIPS agreement (commercial aspects

of intellectual property) establishes certain minimum levels of protection and

obliges all member countries of the WTO (World Trade Organisation) to de-

velop them within certain timeframes, according to the level of development

of the country.3 .

Article 27 of the Declaration of Human Rights, acknowledges that everyone

has the right to the protection of the moral and material interests resulting

from any scientific, literary or artistic production of which he is the author.

However, in many cases (and frequently in the case of software), this right

is transferred in practice to the companies that employ the creators or that

(3)The TRIPS agreement was signed
under pressure from the industri-
alised countries (especially the US
and Japan).

© FUOC • P07/M2101/02709 41 Free Software

distribute or sell their creations. Nonetheless, intellectual property is justified

not just morally, but also for practical reasons, in order to comply with anot-

her right: the public's right to benefit from creation, promoting it through in-

centives and protecting investments in creation, research and development.

In order to harmonise these two rights, intellectual property is temporary and

expires once it has fulfilled its function to promote.

But expiry is not the only distinguishing feature between intellectual property

and ordinary property. Nowadays, its objects can be copied easily and cheaply,

without any loss of quality. Copying does not prejudice the party that is alre-

ady benefiting from what is copied, unlike theft, which does deprive the ori-

ginal possessor. Copying can prejudice the owner, by depriving him of poten-

tial income from a sale. Controlling the copying of intangibles is much more

complicated than controlling the theft of tangible property and can lead us to

a situation of a police state, having to control all copies of information, and

legal insecurity, since the potential for accidental infringement of rights in-

creases. Plus creativity is incremental: creating always copies something, and

the dividing line between a poor imitation and inspiration is a subtle one.

In order to study this in more depth, the following sections go over some of

the categories of intellectual property. In any case, we can already advance that

free software proposes a new point of equilibrium in this sphere, advocating

the benefits of copying and incremental innovation versus exclusive control

of a work by its author.

3.1.1. Copyright

Copyright protects the expression of a content, not the content itself. Copy-

right was developed in order to compensate the authors of books or art. Pro-

tected works may express ideas, knowledge or methods that are freely usable,

but it is prohibited to reproduce them without full or partial permission, with

or without modifications. This protection is very simple, since it automatically

comes into force with an almost universal scope the moment that the work is

published/released. Currently, it has extended to computer programs and (in

some geographical areas) to data compilations.

The Law on Intellectual Property (LPI) in Spain, and similar laws in other coun-

tries, developed on the basis of the Berne Convention of 1886 for the protec-

tion of literary and artistic works, regulates copyright. These rights are divided

into moral and intellectual rights. The former guarantee the author's control

over the distribution of his work, under his name or pseudonym, the recogni-

tion of authorship, respect for the integrity of the work and the right to mo-

dify and withdraw it. The second give the author the right to exploit the work

economically and may be ceded in whole or in part, exclusively or not, to a

© FUOC • P07/M2101/02709 42 Free Software

third party. Moral rights are lifelong or indefinite, whereas intellectual rights

have a fairly long duration (seventy years following the author's death, in the

case of a physical person and Spanish law).

Cession of these rights is established by means of a contract known as a licence.

In the case of private programs, these are generally distributed through "non

exclusive" licences for use, understood as automatically accepted by opening

or installing the product. Therefore it is not necessary to sign the contract,

since in the case of the receiver not accepting it, the rights by default under

the law govern automatically, in other words, none. Licences cannot restrict

some of the rights granted by current legislation, such as the right to make

private copies of art or music, which allows a copy of a recording to be given

to a friend as a gift, but this right does not apply to programs. According to the

LPI of 1996 (Law on Intellectual Property. Royal Legislative Decree 1/1996, of

12th April) [77], modified in 2006 (Law on Intellectual Property. Law 23/2006,

of 7th July) [79], in respect of programs it is always possible to make a backup

copy, they may be studied for making programs interoperable and they may be

corrected and adapted to our needs (which is difficult, because normally we do

not have access to the source code). These rights may not be restricted through

licences, although the laws are under review, in an apparently unstoppable

trend to limit the rights of users. Organised compilations of works or third

party data are also subject to copyright, although under different terms with

a shorter timeframe.

New information and especially web technologies have deeply transformed

copyright protection, since expressions of content are much easier to copy

than content itself. And in the case of programs and some works of art (music,

images, films, and even literature) they "work" automatically on the computer

without the need for any appreciable human effort. However, designs or in-

ventions need to be built and possibly put into production. This possibility of

generating wealth at no cost has led a large proportion of the public, in par-

ticular in poor countries, to duplicate programs without paying the licence,

without public awareness of this being a "malicious action" (unlike in the case

of stealing physical property, for example). Meanwhile, program manufactu-

rers, either alone or in coalition (through the BSA, Business Software Alliance,

for example), exert enormous pressure for licences to be paid and for govern-

ments to pursue what has become known as piracy.

Note

The word piracy has become generally accepted as a synonym for the 'violation of any
form of intellectual property, especially in the case of illegally copying programs, music
and films'. The term seems exaggerated and in the dictionary of the Royal Spanish Aca-
demy of Language it appears with that meaning in the figurative sense, since the original
word refers to 'robbery with violence committed at sea'. This is why Richard Stallman
recommends avoiding it ("Some confusing or loaded words and phrases that are worth
avoiding", 2003) [212].

© FUOC • P07/M2101/02709 43 Free Software

Precisely in order to protect the copyright of contents with private licences,

the so-called DRM systems were born (digital rights management), designed to

control access and the use of data in digital format or to restrict its use to cer-

tain devices. The use of DRM systems has been strongly criticised in many sec-

tors, because they protect copyright imposing restrictions beyond what is suf-

ficient, which is why some, such as the Free Software Foundation, recommend

interpreting the acronym as digital restrictions management, in an attempt to

avoid using the word rights), because it considers that there is an excessive

deprivation of the rights of users in favour of satisfying copyright demands.

3.1.2. Trade secret

Another resource that companies make use of in order to make profit from

their investments is trade secret, protected by the laws of industrial property,

on condition that companies take sufficient measures to hide the information

that they do not wish to disclose. In the case of chemical or pharmaceutical

products that require governmental approval, the State undertakes not to dis-

close submitted data that it is not obliged to make public.

One of the best known applications of trade secret is the private software in-

dustry, which generally sells compiled programs without access to the source

code, in order to prevent derived programs from being developed.

At first sight it would appear that the protection of trade secret is perverse,

since it can deprive society of useful knowledge indefinitely. To some extent

some legislations also interpret it this way, and allow reverse engineering in

order to develop replacement products, although industry pressure has mana-

ged to prohibit this activity in many countries, and in other countries only

made it possible on the grounds of compatibility.

Whether or not trade secret is a perversion, in many cases it is better than a

patent since it offers a competitive advantage to the person placing a product

on the market while the competition tries to imitate it through reverse engi-

neering. The more sophisticated the product the more it will cost the compe-

tition to reproduce it, whereas if it is trivial, it will be copied quickly. Imitati-

on with improvements has been fundamental in the development of today's

superpowers (the US and Japan) and is very important for the financial inde-

pendence of developing countries.

3.1.3. Patents and utility models

The alternative to trade secret is a patent. In exchange for a seventeen to

twenty five year monopoly and a specific financial cost, an invention is publi-

cly disclosed so that it can be easily reproduced. It aims to promote private

© FUOC • P07/M2101/02709 44 Free Software

research, at no cost to the taxpayer and without losing the outcome. The pa-

tent holder can decide whether to allow others to use it and the price to be

paid for the licence.

Official doctrine is that the patents system promotes innovation, but more

and more voices are making themselves heard with the view that it impedes

it, either because the system is poorly implemented or because they consider

that it is perverse in itself (François-René Rideau, "Patents are an economic

absurdity", 2000) [194].

What is considered an invention has changed over time, and there is enor-

mous pressure to extend the scope of the system, to include algorithms, pro-

grams, business models, natural substances, genes and forms of life, inclu-

ding plants and animals. TRIPS requires the patents system not to discrimi-

nate against any field of knowledge. The pressures of the World Intellectual

Property Organisation (WIPO or OMPI) aim to eliminate the need for an in-

vention to have an industrial application and also to reduce the standards of

invention required of a patent. The US is at the forefront of countries with

minimum requirements as to what may be patented, and is additionally the

most belligerent for other countries to adopt its standards, forgetting that the

US refused to accept foreign patents when it was an underdeveloped country.

After obtaining a patent, the rights of the owner are independent of the qua-

lity of the invention and the effort invested in obtaining it. Given the cost

of maintaining a patent, and litigation costs, only large companies are able

to maintain and do maintain a large portfolio of patents, which puts them

in a position to strangle any competition. Given the ease of placing patents

over trivial solutions or solutions with an extensive application, they can thus

monopolise an extensive field of economic activity.

With patents, many activities, especially programming, become extremely

risky, because it is very easy that in developing a complicated program there

is an accidental violation of some patent. When two or more companies are

conducting research in order to resolve a problem, it is highly probable that

they will reach a similar solution at almost the same time, but only one of

them (usually the one with most resources) will manage to patent its inventi-

on, preventing the others from having any chance of recouping their invest-

ment. Any complex technological development becomes a nightmare if in or-

der to resolve each part you first need to find out whether the solution found

is patented (or pending patent), so as to obtain the licence or find an alterna-

tive solution. This problem is particularly severe with free software, where the

violation of algorithm patents is evident from simply inspecting the code.

Although in Europe it is still illegal to patent an algorithm, it will become

possible in the near future, perhaps by the time the reader reads these lines.

© FUOC • P07/M2101/02709 45 Free Software

3.1.4. Registered trademarks and logos

Trademarks and logos are names and symbols that represent an established

quality (or a massive investment in publicity). They are not very important

in the world of free software, possibly because registering them has a cost.

Therefore, just a few important names such as Open Source (by the Open

Source Foundation), Debian (by Software in the Public Interest), GNOME

(by the GNOME Foundation), GNU (by the Free Software Foundation) or

OpenOffice.org (by SUN Microsystems) are registered, and only in a few coun-

tries. However, not registering the names has caused problems. For example,

in the US (1996) and in Korea (1997) people have registered the name Linux

and demanded payment for its use. Resolving these disputes entails legal costs

and the need to prove the use of the name prior to the date of registration.

3.2. Free software licences

Legally speaking, the situation of free programs in relation to private ones is

not very different: they are both distributed under a licence. The difference

lies in what the licence allows. In the case of free program licences, which do

not restrict particularly their use, redistribution and modification, what can be

imposed are conditions that need to be met precisely in the case of wanting to

redistribute the program. For example, it is possible to demand observation of

authorship indications or to include the source code if wanting to redistribute

the program ready to run.

Although essentially free software and private software differ in terms of the

licence under which the authors publish their programs, it is important to

emphasise that this distinction is reflected in completely different conditions

of use and redistribution. As we have seen in the last few years, this has not

only given rise to totally different methods of development, but also to prac-

tically opposite ways (in many aspects) of understanding IT.

The laws on intellectual property ensure that in the absence of explicit per-

mission virtually nothing can be done with a work (in our case, a program) re-

ceived or purchased. Only the author (or the holder of the rights to the work)

can grant us that permission. In any case, ownership of the work does not

change by granting a licence, since this does not entail transfer of ownership,

but rather just the right of use, and in some cases (obligatory with free softwa-

re), of distribution and modification. Free software licences are different from

private software licences precisely in that instead of carefully restricting what

is allowed, it makes certain explicit allowances. When somebody receives a

free program they may redistribute it or not, but if they do redistribute it, they

can only do so because the licence allows it. But to do so the licence must be

observed. Indeed, the licence contains the rules of use that users, distributors,

integrators and all other parties involved in the world of IT must observe.

© FUOC • P07/M2101/02709 46 Free Software

In order to fully understand all the legal ins and outs that arise in this chapter

(and which are without question very important to understanding the nature

of free software) we should also be aware that each new version of a program

is considered a new work. The author, once again, is fully entitled to do what

he wants with it, even to distribute it under totally different terms and condi-

tions (in other words, with a totally different licence to the earlier one). That

way if the reader is the sole author of a program, he may publish one version

under a free software licence and, if he wishes to, another later one under a

private licence. In the case of there being more authors and the new version

containing code that they have produced, if it will be published under diffe-

rent conditions, all of them will have to approve the change in licence.

A still relatively open issue is the licence that applies to external contributions.

Generally it is assumed that someone who contributes to a project accepts de

facto that their contribution adjusts to the conditions specified by its licence,

although the legal grounds for this are poor. The initiative of the Free Software

Foundation to ask by means of a (physical) letter for cession of all copyright

from anyone who contributes more than ten lines of code to a GNU sub-pro-

ject is a clear indication that in the world of free software there are stricter

policies with regards to these contributions.

Based on the foregoing, in the rest of the chapter we will focus on analysing

different licences. To place this analysis into context, we must remember that

from now on, when we say that a licence is a free software licence, what we

mean is that it fulfils the definitions of free software presented in section 1.1.1.

3.2.1. Types of licences

There is an enormous variety of free licences, although for practical reasons

most projects use a small group of four or five. On the one hand, many projects

don't want to or don't have the resources to design their own licence; on the

other hand, most users prefer to refer to a well-known licence than having to

read and analyse complete licences.

Bibliography

There is a compilation and discussion of the licences considered non-free or free but
incompatible with the GPL from the point of view of the FSF in the Free Software Foun-
dation, "Free licences" [121]. The philosophically different point of view to that of the
Open Source Initiative is shown in its list (Open Source Initiative, "Open Source licen-
ces") [181]. We can see discrepancies in some licences, such as the Apple Public Source
Licence Ver. 1.2, which the FSF considers non-free because of the obligation to publish
all changes (even if they are private), to notify Apple of redistributions, or the possibility
of unilateral revocation. Nevertheless, the pressure of this classification made Apple pu-
blish its version 2.0 in August 2003, which the FSF then did consider free.

© FUOC • P07/M2101/02709 47 Free Software

It is possible to divide free software licences into two large families. The first

comprises licences that do not impose special conditions on the second redis-

tribution (in other words, that only specify that the software can be redistribu-

ted or modified, but that do not impose special conditions for doing so, which

allows, for example, someone receiving the program to then redistribute it

as private software): these are what we will refer to as permissive licences. The

second family, which we will call strong licences (or copyleft licences), inclu-

de those that, in the style of GNU's GPL, impose conditions in the event of

wanting to redistribute the software, aimed at ensuring compliance with the

licence's conditions following the first redistribution. Whereas the first group

emphasises the freedom of the person receiving the program to do almost

anything they want with it (in terms of the conditions for future redistribu-

tions), the second emphasises the freedom of anyone who may potentially

receive some day a work derived from the program, obliging subsequent mo-

difications and redistributions to respect the terms of the original licence.

The difference between these two types of licences has been (and remains) a

debatable issue amongst the free software community. In any case, we should

remember that they are all free licences.

3.2.2. Permissive licences

Permissive licences, also known sometimes as liberal or minimal licences, do

not impose virtually any conditions on the person receiving the software, and

yet, grant permission to use, redistribute and modify. From a certain point of

view, this approach can be seen as a guarantee of maximum freedom for the

person receiving the program. But from another, it may also be understood

as maximum neglect in respect of ensuring that once someone receives the

program, that person guarantees the same freedoms when redistributing that

program. In practice, these licences typically allow software that its author

distributes under a permissive licence to be redistributed with a private licence.

Among these licences, the BSD licence is the best known, to such an extent

that often permissive licences are referred to as BSD-type licences. The BSD

(Berkeley Software Distribution) licence stems from the publication of diffe-

rent versions of Unix produced by the University of California in Berkeley, in

the US. The only obligation it imposes is to credit the authors, while it allows

redistribution in both binary and source code formats, without enforcing eit-

her of the two in any case. It also gives permission to make any changes and

to be integrated into other programs without almost any restrictions.

Note

One of the consequences in practice of BSD-type licences has been to diffuse standards,
since developers find no obstacle to making programs compatible with a reference im-
plementation under this type of licence. In fact, this is one of the reasons for the extra-
ordinary and rapid diffusion of Internet protocols and the sockets-based programming
interface, because most commercial developers derived their realisation from the Uni-
versity of Berkeley.

Note

The term copyleft when appli-
ed to a licence, used mainly by
the Free Software Foundation
to refer to its own licences, has
similar implications to those
referred to as strong licences as
used in this text.

© FUOC • P07/M2101/02709 48 Free Software

Permissive licences are fairly popular, and there is an entire family with similar

characteristics to the BSD: X Window, Tcl/Tk, Apache, etc. Historically, these

licences appeared because the corresponding software was developed by uni-

versities with research projects financed by the US Government. The univer-

sities did without selling these programs, on the assumption that they had al-

ready been paid for by the Government, and therefore by the taxpayer, which

meant that any company or individual could use the software without almost

any restriction.

As already mentioned, on the basis of a program distributed under a permissive

licence another one can be created (in reality, a new version), which may be

private. Critics of BSD licences see a danger in this feature, because it does not

guarantee the freedom of future program versions. Their advocates, on the

other hand, consider that it is a maximum expression of freedom and argue

that, at the end of the day, anything (almost) that is wanted can be done with

the software.

Most permissive licences are a word for word copy of Berkeley's original, mo-

difying just what refers to authorship. In some cases, such as the Apache pro-

ject licence, it includes an additional clause, such as prohibiting giving the

same name as the original to redistributed versions. All of these licences usu-

ally include, like BSD, the prohibition to use the name of the rightholder for

promoting derived products.

At the same time, all the licences, whether BSD-type or not, include a limi-

tation of guaranteewhich is really a disclaimer, necessary in order to avoid le-

gal claims for implicit guarantees. Although this disclaimer in free software

has been broadly criticised, it is common practice with proprietary software,

which generally only guarantees that the support is correct and that the pro-

gram in question runs.

Summary outline of the BSD licence

Copyright © the owner. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1) Redistributions of source code must reproduce the copyright notice, and list these
conditions and the disclaimer.

2) Redistributions in binary form must reproduce the copyright notice and list these
conditions and the disclaimer in the documentation.

3) Neither the name of the owner nor the names of its contributors may be used to
endorse products derived from this software without permission.

This�program�is�provided�"as�is",�and�any�express�or�implicit�warranties,�of�merc-
hantability�or�fitness�for�a�particular�purpose�are�disclaimed.�In�no�event�shall�the
owner�be�liable�for�any�damage�caused�by�its�use�(including�loss�of�data,�loss�of�pro-
fits�or�business�interruption).

Next we describe in brief a few permissive licences:

© FUOC • P07/M2101/02709 49 Free Software

• X Window licence, version 11 (X11)

(http://www.x.org/Downloads_terms.html) [73].

This is the licence used to distribute the X Window system, the most ex-

tensively used windows system in the world of Unix, and also GNU/Linux

environments. It is very similar to the BSD licence, which allows redistri-

bution, use and modification without practically any restrictions. It is so-

metimes called the MIT licence (with a dangerous lack of precision, since

MIT has used other types of licences). Works derived from X Windows,

such as XFree86 are also distributed under this licence.

• Zope Public Licence 2.0 (http://www.zope.org/Resources/ZPL) [76].

This licence (commonly referred to as ZPL) is used for the distribution of

Zope (an applications server) and other related products. It is similar to

BSD, with the curious feature that it expressly prohibits the use of trade-

marks registered by the Zope Corporation.

• Apache licence.

This the licence under which most of the programs produced by the Apac-

he project are distributed. It is similar to the BSD licence.

There are some free programs that are not distributed with a specific licence,

rather the author explicitly declares them to be public domain. The main out-

come of this declaration is that the author waives all rights to the program,

which can therefore be modified, redistributed, used, etc., in any way. In prac-

tical terms, it is very similar to a program being under a BSD-type licence.

3.2.3. Strong licences

The GNU General Public Licence (GNU GPL)

The General Public Licence of the GNU project (Free Software Foundation,

1991) [118] (better known by its English acronym GPL), which appears in

appendix C, is by far the most popular and well-known of all in the world of

free software. It was created by the Free Software Foundation (promoter of the

GNU project), and was originally designed to be the licence for all software

generated by the FSF. However, its use has extended further becoming the

most used licence (for example, more than 70% of the projects announced on

Freshmeat are licensed under the GPL), even by flagship projects in the world

of free software, such as the Linux kernel.

The GPL licence is interesting from a legal point of view because it makes

creative use of copyright legislation, to achieve practically the opposite effect

of what that legislation intends: instead of limiting users rights, it guarantees

them. For this reason, this manoeuvre is frequently called copyleft (a play on

words by replacing the word "right" with "left"). Someone with a sense of hu-

mour even devised the slogan "copyleft, all rights reversed".

http://www.x.org/Downloads_terms.html
http://www.zope.org/Resources/ZPL

© FUOC • P07/M2101/02709 50 Free Software

In basic terms, the GPL licence allows redistribution in binary form and in

source code, although in the case of a binary redistribution access to the source

code is also obligatory. It also allows modifications to be made without any

restrictions. However, it is only possible to redistribute code licensed under the

GPL integrated with other code (for example, using links) if it has a compatible

licence. This has been called the viral effect (although many consider this

name to be disrespectful) of the GPL, since once code has been published with

these conditions they can never be changed.

Note

A licence is incompatible with the GPL when it restricts any of the rights guaranteed by
the GPL, either explicitly by contradicting any of its clauses, or implicitly, by imposing
a new limitation. For example, the current BSD licence is compatible, but the Apache
licence is incompatible because it demands that publicity materials expressly mention
that combined work contains code of each and every one of the right holders. This does
not imply that programs with both licences cannot be used simultaneously, or even be
integrated. It just means that those integrated programs cannot be distributed, since it is
impossible to comply simultaneously with the redistribution conditions of both.

The GPL licence is designed to guarantee the freedom of source code at all

times, since a program published and licensed under its conditions may ne-

ver be private. Moreover, neither that program nor modifications of it may

be published with a different licence other than the GPL. As already mentio-

ned, supporters of the BSD-type licences see a limitation of freedom in that

clause, whereas followers of the GPL believe that it is a way of ensuring that

the software will always be free. One way of looking at it would be to consider

that the GPL licence maximises the freedom of users, whereas the BSD licence

maximises the freedom of developers. However, we should note that in the

second case we are referring to developers in general and not to authors, sin-

ce many authors consider the GPL licence to be more in their interest, since

it obliges competitors to publish their modifications (improvements, correc-

tions, etc.) if they redistribute their software, whereas with a BSD-type licence

this is not necessarily the case.

As regards this licence's contrary nature to copyright, it is because its philo-

sophy (and that of the Free Software Foundation) is that software should

not have owners (Richard Stallman, "Why software should not have owners",

1998) [207]. Although it is true that software licensed under the GPL has an

author, who at the end of the day is the person that allows copyright legislation

to apply to it, the conditions with which it is published confer such a nature

on the software that we can consider ownership to correspond to the person

in possession of the software and not to the person who has created it.

Of course, this licence also includes disclaimers in order to protect the authors.

Likewise, in order to protect the good reputation of the original authors, any

modification of a source file must include a note specifying the date and aut-

hor of the modification.

© FUOC • P07/M2101/02709 51 Free Software

The GPL also takes software patents into account, and demands that if the

source carries patented algorithms (as we have said, something common and

legal in the US, but currently irregular in Europe), either a licence for use of

the patent free of charge must be granted, or it cannot be distributed under

the GPL.

The latest version of the GPL licence, the second one, was published in 1991

(although at the time of writing the third one is in an advanced stage of prepa-

ration). Specifically bearing in mind future versions, the licence recommends

licensing under the conditions of the second one or any other subsequent

one published by the Free Software Foundation, which is what many authors

do. Others, however, including in particular Linus Torvalds (Linux creator),

only publish their software under the conditions of the second version of the

GPL, in a bid to distance himself from potential future evolutions of the Free

Software Foundation.

The third version of the GPL (http://gplv3.fsf.org) [115] intends to update it

to the current software scenario, in respect mainly of aspects such as patents,

DRM (digital rights management) and other limitations on software freedom.

For example, the draft currently available at the time of writing (May 2007)

does not allow a hardware manufacturer to block the use of certain softwa-

re modules if they do not carry a digital signature accrediting a determined

author. An example of this practice occurs with digital video recorders TiVo,

which provide the source code to all their software (licenced with GPLv2) at

the same time as they do not allow modifications of the code to be used on

the hardware4.

Neither does the licence allow the software to be forcibly run on a pre-set

environment, such as occurs when the use of unsigned kernels is prohibited

on distributions that consider it appropriate for security reasons.

Note

There are several points in the GPLv3 licence that have generated a degree of opposition.
One of the opposing groups is the group of Linux kernel developers (including Linus Tor-
valds himself). They consider that the requirement to use signed software components
allows certain security characteristics to be granted that would otherwise be impossible,
at the same time as their explicit prohibition would extend the licence to the hardwa-
re field. Plus, the limitation established by the signatures mechanism would only occur
with the hardware and software platforms that are designed that way, meaning that the
software could be modified for its use on different hardware. In respect of this point,
the FSF is in favour of using signatures mechanisms that advise against using unsigned
components for security reasons, but believes that not prohibiting those signatures mec-
hanisms that prevent the use of unsigned components, could give rise to scenarios where
there would be no hardware or software platforms on which to run those software mo-
difications, meaning that the liberty of free software would then become totally limited
where modifying code is concerned.

(4)This case has even suggested the
use of the word tivoisation for ot-
her similar cases that have occur-
red.

http://gplv3.fsf.org/

© FUOC • P07/M2101/02709 52 Free Software

The GNU Lesser General Public Licence (GNU LGPL)

The GNU Lesser General Public Licence, (Free Software Foundation, GNU LG-

PL, version 2.1, February 1999) [119], commonly referred to by its initials in

English - LGPL - is another licence of the Free Software Foundation. Designed

initially for its use with libraries (the L, originally stood for library), it was re-

cently modified to be considered the little sister (lesser) of the GPL.

The LGPL allows free programs to be used with private software. The program

itself is redistributed as if it were under the GPL licence, but its integration

with any other software package is allowed without virtually any restrictions.

As we can see, originally this licence was aimed at libraries, in order to promo-

te their use and development without encountering the integration problems

implied by the GPL. However, when it was realised that the pursued objecti-

ve of making free libraries popular was not compensated by the generation

of free programs, the Free Software Foundation decided to change the library

to lesser and advised against its use, except in very occasional and particular

circumstances. Nowadays, there are many programs that are not libraries li-

censed under the terms of the LGPL. For example, the Mozilla navigator or

OpenOffice.org office suite are also licensed, among others, under the LGPL.

Note

As is the case with the GPL, the last published version of the LGPL is the second, alt-
hough there is already a template of the third version (http://gplv3.fsf.org/pipermail/in-
fo-gplv3/2006-July/000008.html) [116]. This new version is shorter than the previous
one since it refers all its text to the GPLv3 and merely highlights its differences.

Other strong licences

Other strong licences that deserve mentioning:

• Sleepycat license (www.sleepycat.com/download/oslicense.html) [59].

This is the license under which the company Sleepycat (http://

www.sleepycat.com/) [60] distributes its programmes (of which we could

mention the well-known Berkeley DB). It enforces certain conditions whe-

never the program or works derived from it are redistributed. In particular,

it obliges the source code to be offered (including the modifications in

the case of a derived work) and for the redistribution to impose the same

conditions on the receiver. Although much shorter than the GNU GPL, it

is very similar in its main effects.

• eCos License 2.0 (http://www.gnu.org/licenses/ecos-license.html) [25].

This is the license under which eCos (http://sources.redhat.com/ecos/)

[24], a real-time operating system, is distributed. It is a modification of the

GNU GPL which does not consider that code linked to the programs it

http://gplv3.fsf.org/pipermail/info-gplv3/2006-July/000008.html
http://gplv3.fsf.org/pipermail/info-gplv3/2006-July/000008.html
http://www.sleepycat.com/download/oslicense.html
http://www.sleepycat.com/
http://www.sleepycat.com/
http://www.gnu.org/licenses/ecos-license.html
http://sources.redhat.com/ecos/

© FUOC • P07/M2101/02709 53 Free Software

protects, is subject to the clauses of the GNU GPL if redistributed. From

this point of view, its effects are similar to those of the GNU LGPL.

• Affero General Public License (http://www.affero.org/oagpl.html) [78].

It is an interesting modification of the GNU GPL which considers the ca-

se of programs offering services via the web, or in general, via computer

networks. This type of program represents a problem from the point of

view of strong licences. Since use of the program does not imply having

received it through a redistribution, even though it is licensed, under the

GNU GPL for example, someone can modify it and offer a service on the

Web using it, without redistributing it in any way, and therefore, without

being obliged, for example, to distribute its source code. The Affero GPL

has a clause obliging that if the program has a means for providing its

source code via the web to whoever uses it; this feature may not be disa-

bled. This means that if the original author includes this capability in the

source code, any user can obtain it, and plus that redistribution is subject to

the conditions of the licence. The Free Software Foundation is considering

including similar provisions in version 3 of its GNU GPL.

• IBM Public License 1.0 (http://oss.software.ibm.com/developerworks/

opensource/license10.html) [40].

It is a licence that allows a binary redistribution of derived works only if

(among other conditions) a mechanism is contemplated for the person

receiving the program to receive the source code. The redistribution of

source code must be made under the same licence. This licence is also in-

teresting because it obliges the party redistributing the program with mo-

difications, to license automatically and free of charge any patents affec-

ting such modifications and that are the property of the redistributor to

the party receiving the program.

• Mozilla Public License 1.1 (http://www.mozilla.org/MPL/MPL-1.1.html)

[49].

This is an example of a free licence drawn up by a company. It is an evolu-

tion of the first free licence that Netscape Navigator had, which was very

important in its day because it was the first time that a well-known com-

pany decided to distribute a program under its own free licence.

3.2.4. Distribution under several licences

Up until now we have assumed that every program is distributed under a sin-

gle licence which specifies the conditions for use and redistribution. Howe-

ver, an author can distribute works under different licences. In order to un-

derstand this, we should remember that every publication is a new work, and

that different versions can be distributed with the only difference being in

http://www.affero.org/oagpl.html
http://oss.software.ibm.com/developerworks/opensource/license10.html
http://oss.software.ibm.com/developerworks/opensource/license10.html
http://www.mozilla.org/MPL/MPL-1.1.html

© FUOC • P07/M2101/02709 54 Free Software

their licence. As we will see, most of the time this translates into the fact that

depending on what the user wants to do with the software he will have to

observe the terms of one licence or another.

One of the best known examples of a double licence is the one for the Qt li-

brary, on which the KDE desktop environment is founded. Trolltech, a com-

pany based in Norway, distributed Qt with a private licence, although it wai-

ved payment for programs that didn't use it for profit. For this reason and be-

cause of its technical characteristics, it was the KDE project's choice in the mid-

nineties. This gave rise to an intense controversy with the Free Software Foun-

dation because then KDE stopped being completely free software, as it depen-

ded on a private library. Following an extensive debate (during which GNOME

appeared as KDE's free competitor in the desktop environment), Trolltech de-

cided to use the double-licence system for its star product: the programs under

the GPL could use a Qt GPL version, whereas if the intention was to integrate

it with programs that had incompatible licences with the GPL (such as private

licences), a special licence had to be bought from them. This solution satisfied

all parties, and nowadays KDE is considered free software.

Other well-known examples of dual licences are StarOffice and

OpenOffice.org, or Netscape Communicator and Mozilla. In both cases, the

first product is private whereas the second is a free version (generally under

the conditions of several free licences). Although originally free projects were

limited versions of their private siblings, over time they have followed their

own path, meaning that nowadays they have a fairly high level of indepen-

dence.

3.2.5. Program documentation

The documentation that comes with a program forms an integral part of it, as

do the comments on source code, as recognised, for example by the Spanish

Law on Intellectual Property. Given this level of integration, it would seem

logical that the same freedoms should apply to the documentation and that

it should evolve in the same way as the program: any modification made in a

program requires a simultaneous and consistent change in its documentation.

Most of this documentation tends to be coded as unformatted text files, since

the aim is to make it universally accessible with a minimum tools environ-

ment, and (in the case of free programs) normally includes a small introduc-

tion to the program(README), installation guidelines (INSTALL), some history

on the evolution and future of the program (CHANGELOG and ALL), authors

and copyright (AUTHORS and COPYRIGHT or COPYING), as well as the instruc-

tions for use. All of these, excluding authors and copyright, must be freely

modifiable as the program evolves. To authors we just need to add names and

credits without eliminating anything, and the copyright must only be modi-

fied if the conditions allow it.

© FUOC • P07/M2101/02709 55 Free Software

The instructions for use are normally coded in more complex formats, since

they tend to be longer and richer documents. Free software demands that this

documentation may be changed easily, which in turn enforces the use of so-

called transparent formats, with known specifications and able to be proces-

sed by free tools, such as, in addition to pure and clean text, the format of

the Unix manual pages, TexInfo, LaTeX or DocBook, without prejudice to al-

so being able to distribute the result of transforming these source documents

into more suitable formats for visualisation or printing, such as HTML, PDF

or RTF (normally more opaque formats).

However, program documentation is often prepared by third parties who have

not been involved in the development. Sometimes the documentation is of

a didactic nature, to facilitate the installation and use of a specific program

(HOWTO); sometimes it is more extensive documentation that covers several

programs and their integration, that compares solutions, etc., either in the

form of a tutorial or reference manual; sometimes it is a mere compilation of

frequently asked questions and their answers (FAQ). A noteworthy example is

the Linux documentation project (http://www.tldp.org) [44]. In this category

we could also include other technical documents, not necessarily about pro-

grams, whether the instructions for cabling a local network, making a solar

oven, repairing an engine or selecting a tools supplier.

These documents are halfway between mere program documentation and

highly technical and practical articles or books. Without prejudice to the fre-

edom to read, copy, modify and redistribute, the author may wish to give

opinions that he does not want to be distorted, or at least not want any dis-

tortion to be attributed to him; or he may wish to keep paragraphs, such as

acknowledgements; or make it forcible to modify others, such as the title. Alt-

hough these concerns can also arise with software itself, they have not been

expressed as vehemently in the world of free software as in the world of free

documentation.

3.3. Summary

In this chapter we have looked at the legal aspects that govern or influence the

world of free software. They form part of intellectual or industrial property le-

gislation conceived, in principle, to stimulate creativity by rewarding creators

for a specific period. Of the different types, so-called copyright is the one that

most affects free software, and properly applied it can be used to guarantee

the existence of free software in the form of free licences.

We have seen the importance of licences in the world of free software. And

we have also presented the enormous variety of existing licences, the grounds

on which they are based, their repercussions, advantages and disadvantages.

Certainly, we can say that the GPL tries to maximise the freedom of software

http://www.tldp.org/

© FUOC • P07/M2101/02709 56 Free Software

users, whether they receive the free software directly from its author or not,

whereas BSD-type licences try to maximise the freedom of the modifier or

redistributor.

Given what we have seen in this chapter, we can deduce that it is very impor-

tant to decide early on what licence a project will have and to be fully aware of

its advantages and disadvantages, since a later modification tends to be extre-

mely difficult, especially if the number of external contributions is very large.

To conclude, we would like to highlight the fact that free software and propri-

etary software differ solely and exclusively in terms of the licence under which

the programs are published. In the following chapters, however, we will see

that this purely legal difference may or may not affect the way software is de-

veloped, giving rise to a new development model, which can differ from the

"traditional" development methods used in the software industry to a greater

or lesser extent, depending on each case.

© FUOC • P07/M2101/02709 57 Free Software

4. Developers and their motivations

"Being a hacker is lots of fun, but it's a kind of fun that takes a lot of effort. The effort
takes motivation. Successful athletes get their motivation from a kind of physical delight
in making their bodies perform, in pushing themselves past their own physical limits.
Similarly, to be a hacker you have to get a basic thrill from solving problems, sharpening
your skills and exercising your intelligence."

Eric Steven Raymond, "How to become a hacker"

4.1. Introduction

The partly anonymous and distributed way in which free software has develo-

ped has meant that for many years the human resources that it relies on have

been largely unknown. The result of this lack of knowledge has been to myt-

hologize, at least somewhat, the world of free software and the life of those

behind it, based on more or less broad stereotypes about the hacker culture and

computers. In the last few years, the scientific community has made an enor-

mous effort to get to know the people who participate in free software projects

better, their motivations, academic backgrounds, and other potentially rele-

vant aspects. From a purely pragmatic point of view, knowing who is involved

in this type of projects and why, can be extremely useful when it comes to

generating free software. Some scientists, mainly economists, psychologists,

and sociologists, have wanted to go further and have seen in this community

the seed of future virtual communities with their own rules and hierarchies, in

many cases totally different to those we know in "traditional" society. One of

the most important mysteries to resolve was to learn what motivated software

developers to participate in a community of this nature, given the fact that

financial benefits, at least direct ones, are practically non-existent, whereas

indirect ones are difficult to quantify.

4.2. Who are developers?

This section aims to provide a global overview of the people who spend their

time and energy participating in free software projects. The data that we show

stems mostly from scientific research in the last few years, the most significant

but by no means exclusive including Free/libre and open source software. Survey

and study, part IV: "Survey of developers", 2002 [126], and "Who is doing it?

Knowing more about libre software developers", 2001 [197].

Software developers are normally young people. The average age is around

twenty seven. The variation in age is significant, since the dominant group

is in the twenty one to twenty four age bracket, and the most frequently ap-

pearing value is twenty three. It is interesting to note how the age of joining

the free software movement peaks between eighteen and twenty five and is

particularly pronounced between twenty one and twenty three, which would

© FUOC • P07/M2101/02709 58 Free Software

coincide with university age. This evidence stands in contrast to the claim that

free software is mostly a teenage thing, although there is an obvious involve-

ment of teenagers (about 20% of developers are under twenty). For certain,

what we can see is that most developers (60%) are in their twenties, with the

under-twenties and over-thirties equally sharing the remaining 40%.

From the age of joining we can deduce that there is an enormous university

influence on free software. This is not surprising, given that as we have seen

in the chapter on history, before free software was even known by that name

it was closely connected to higher education. Even today, student user groups

and universities continue to drive the use and expansion of free software. The-

refore, it is not surprising that more than 70% of developers have a university

education. This data is even more significant if we bear in mind that the re-

maining 30% are not at university yet because they are still in school. Even so,

they are also involved and are no less appreciated than developers who have

never had access to higher education, but are IT enthusiasts.

The free software developer is normally male. The figures juggled by different

surveys on the presence of women in the community vary between 1% and

3%, competing with their own margin of error. At the same time, a majority

(60%) claims to have a partner, while the number of developers with children

is just 16%. Given the age brackets of free software developers, this data coin-

cides fairly accurately with a random sample, meaning that it may be consi-

dered "normal". The myth of the lonely developer whose enthusiasm for IT is

the only thing in his life is shown to be, as we can see, an exception rather

than the rule.

4.3. What do developers do?

Professionally speaking, free software developers describe themselves as

software engineers (33%), students (21%), programmers (11%), consultants

(10%), university professors (7%), etc. On the opposite end of the scale, we

find that they tend not to form part of sales or marketing departments (about

1%). It is interesting to note how many of them define themselves as software

engineers rather than programmers, almost three times as many, bearing in

mind, as we will see in the chapter on software engineering, that the appli-

cation of classical software engineering techniques (and even some modern

ones) is not really entrenched in the world of free software.

The university connection, which has already been proven, rears its head

again in this section. About one in three developers is a student or university

professor, which goes to show the tremendous collaboration between people

mainly from the software industry (the remaining two thirds) and the acade-

mic sphere.

© FUOC • P07/M2101/02709 59 Free Software

At the same time, it has been possible to identify a large scope of mixed disci-

plines: one in five developers comes from a field that is not IT. This, combined

with the fact that there is also a similar number of non-university developers,

reflects a wealth of interests, origins, and certainly, composition of develop-

ment teams. It is very difficult to find a modern industry, if there is one, where

the degree of heterogeneity is as large as the one we can see in free software.

In addition to the approximately 20% of students, 64% of developers are

mostly paid employees, whereas the proportion of self-employed developers

is 14%. Finally, just 3% claims to be unemployed, a significant fact since the

survey was conducted after the dotcom crisis began.

Note

The fact that free software financing, unlike with private software, cannot be achieved
through the sale of licences has always propitiated heated debates as to how programmers
should earn their living. In the surveys that we refer to in this chapter, 50% of developers
claimed to have obtained direct or indirect financial compensation for their involvement
in free software. However, many others aren't so sure. Richard Stallman, founder of the
GNU project, when asked what a free software developer should do in order to make
money, tends to reply that he can work as a waiter.

4.4. Geographical distribution

Obtaining developers' geographical data is an issue that needs to be approac-

hed in a more scientific manner. The problem with the research shown in this

chapter is that because it is based on Internet surveys, open to anyone wishing

to participate, participation has depended to a great extent on the sites it was

posted, and the way in which it was announced. To be accurate, we should

note that the surveys did not aim to be representative in this regard, but rather

to obtain the answers and/or opinions of the largest possible number of free

software developers.

However, we could venture to make a few statements on this issue, knowing

that this data is not as reliable as previous data, and that therefore, the

margin for error is much greater. What seems to be a fact is that most free

software developers come from industrialised countries, and that the presen-

ce of developers from so-called Third World countries is rare. Consequently,

it shouldn't be surprising that the map of developers of the Debian project

(http://www.debian.org/devel/developers.loc) [187], for example, matches the

photographs of the earth at night: where there is light - read "where there is

an industrialised civilisation" - that is where free software developers tend to

concentrate. This, which may seem logical at first sight, stands in contrast to

the potential opportunities that free software can offer Third World countries.

We can find a clear example in the following table, which contains the most

common countries of origin of the Debian project developers in the last four

years. There is a noticeable trend towards decentralisation of the project, evi-

dent from the fact that the growth in the number of developers from the US,

the country which most contributes, is lower than the average. And the fact is

http://www.debian.org/devel/developers.loc

© FUOC • P07/M2101/02709 60 Free Software

that, in general, countries have managed to double their numbers of volun-

teers in the last four years, and France, which has managed to multiply its

presence by five, is the clearest example in this regard. Considering that De-

bian took its first steps on the American continent (in the US and in Canada

in particular), we can see that in the last few years the project has become

Europeanised. We assume that the following step will be the much sought-af-

ter globalisation, with the incorporation of South American countries, African

and Asian countries (with the exception of Korea and Japan, which are already

well represented), although the data in our possession (two collaborators from

Egypt, China or India, and one in Mexico, Turkey or Colombia in June 2003)

are not very promising in this sense.

In the world of free software (and not just in the case of Debian), there is an

extensive debate over the supremacy of Europe or the United States. Almost all

studies have shown that the presence of European developers is slightly hig-

her than the North American one, an effect that is mitigated by the fact that

Europe's population is greater than that of the US. Therefore, we are dealing

with a war of numbers, since the number of developers per capita is higher

among the North Americans, but if we take into account the number of peo-

ple with Internet access instead of the total population, then Europe comes

out on top again.

In terms of countries, the areas with the highest levels of implantation (in

numbers of developers divided by the population) are Northern Europe (Fin-

land, Sweden, Norway, Denmark and Iceland) and Central Europe (Benelux,

Germany and the Czech Republic), followed by Australia, Canada, New Zea-

land and the US. Despite its importance in absolute terms (due to the large

populations of France, Italy and Spain), the Mediterranean zone however, is

below average.

Table 1. Countries with the largest number of Debian developers

Country 01/07/
1999

01/07/
2000

01/07/
2001

01/07/
2002

20/06/2003

US 162 169 256 278 297

Germany 54 58 101 121 136

UK 34 34 55 63 75

Australia 23 26 41 49 52

France 11 11 24 44 51

Canada 20 22 41 47 49

Spain 10 11 25 31 34

Japan 15 15 27 33 33

Italy 9 9 22 26 31

© FUOC • P07/M2101/02709 61 Free Software

Country 01/07/
1999

01/07/
2000

01/07/
2001

01/07/
2002

20/06/2003

Netherlands 14 14 27 29 29

Sweden 13 13 20 24 27

4.5. Dedication

The number of hours that free software developers spend on developing free

software is one of the big unknowns. We should also point out that this is one

of the main differences with company-generated software, where the mem-

bers of the team and time spent by each team member on a development are

well known. The time that developers dedicate to free software can be taken

as an indirect measure of their level of professionalisation. Before showing

the data currently available, it is important to note that it has been obtained

from estimates given by developers in various surveys, so that in addition to

the inherent inaccuracies of this type of data gathering, we need to consider

a margin of error associated to how each developer interprets development

time. Hence, it is certain that many developers will not include the time spent

opening e-mails (or perhaps they will) and only specify the time they spend

programming and debugging. Therefore, all the figures we show next need to

be considered with due reserve.

The research conducted to date shows that each software developer spends

eleven hours a week on average ("Motivation of software developers in open

source projects: an internet-based survey of contributors to the Linux kernel",

2003) [143]. However, this figure can be deceptive, since there is an enormous

variation in the time spent by software developers. In the study Free/libre and

open source software. Survey and study, part IV: "Survey of developers", 2002

[126], 22.5% of those surveyed said that their contribution was less than two

hours per week, and this figure increased to 26.5% for those spending two to

five hours per week; between six and ten hours was the time spent by 21.0%,

while 14.1% spent between eleven and twenty hours per week; 9.2% claimed

that the time they spent developing free software was between twenty and

forty hours per week and 7.1%, over forty hours per week.

Table 2. Dedication in hours per week

Hours per week Percentage

Less than 2 hours 22.5%

Between 2 and 5 hours 26.1%

Between 5 and 10 hours 21.0%

Between 10 and 20 hours 14.1%

© FUOC • P07/M2101/02709 62 Free Software

Hours per week Percentage

Between 20 and 40 hours 9.2%

More than 40 hours 7.1%

Note

In addition to showing the level of professionalisation of free software development te-
ams, the time spent in hours is a relevant parameter when it comes to making cost es-
timates and comparisons with private development models in the industry. With free
software, for now, we just have the end products (new software deliveries, synchronisa-
tion of new code in versions systems...) which do not allow us to know how much time
the developer has spent on achieving them.

An analysis of these figures tell us that about 80% of developers perform the-

se tasks in their free time, whereas only one in five could consider that they

spend as much time on this activity as a professional. Later, in the chapter on

software engineering, we will see how this data matches developers' contribu-

tions, since they both appear to follow the Pareto law (vid. section 7.6).

4.6. Motivations

There has been speculation and speculation remains as to the motivations for

developing free software, especially when it is done in free time (which, as we

have seen, corresponds to about 80% of developers). As in previous sections,

we only have the survey data, which is why it is important to realise that the

answers have been given by the developers themselves, meaning that they

may be more or less coherent with reality. The percentages shown next exceed

the 100% mark because there was an option for participants to select several

answers.

In any case, it appears from their answers that most want to learn and to de-

velop new skills (approximately 80%) and that many do so in order to share

knowledge and skills (50%) or to participate in a new form of cooperation

(about a third). The first data is not surprising, given that a professional with

more knowledge will be in greater demand than one with less. However, it is

not quite so easy to explain the second data, and it would even seem to con-

tradict Nikolai Bezroukov's opinion in "A second look at the cathedral and the

bazaar" (December, 1998) [91] that the leaders of free software projects are ca-

reful not to share all the information in their possession in order to perpetuate

their power. Meanwhile, the third most frequent choice is undoubtedly, a true

reflection of developers' enthusiasm about the way free software is created in

general; it is difficult to find an industry in which a group of lightly organised

volunteers can technologically speaking stand up to the sector's giants.

Although the "classical" theory for explaining why free software developers

spend time contributing to this type of projects is reputation and indirect fi-

nancial benefits in the medium and long term, it would appear that developers

themselves disagree with these claims. Just 5% of those surveyed replied that

© FUOC • P07/M2101/02709 63 Free Software

they develop free software in order to make money, whereas the number who

did so in order to establish a reputation rose to 9%, far from the answers given

in the preceding paragraph. In any case, it seems that researching developers'

motivations to become part of the free software community is a fundamental

task, which sociologists and psychologists will have to face in the near future.

4.7. Leadership

Reputation and leadership are two of the characteristics used to explain the

success of free software, and especially, the bazaar model, as we will see from

the chapter on software engineering. As we have seen in another chapter, on

software licences, there are certain differences between free software licences

and its equivalents in the documentation field. These differences stem from

the way of retaining authorship and authors' more accentuated opinion in

text than in programs.

In Free/libre and open source software. Survey and study, part IV: "Survey of de-

velopers" (2002) [126] a question was included that asked developers to say

what people from a list were known to them, not necessarily personally. The

results, set out in table 3, show that these people can be divided into three

clearly distinct groups:

Table 3. Level of awareness of important developers

Developer Known for

Linus Torvalds 96.5%

Richard Stallman 93.3%

Miguel de Icaza 82.1%

Eric Raymond 81.1%

Bruce Perens 57.7%

Jamie Zawinski 35.8%

Mathias Ettrich 34.2%

Jörg Schilling 21.5%

Marco Pesenti Gritti 5.7%

Bryan Andrews 5.6%

Guenter Bartsch 3.5%

Arpad Gereoffy 3.3%

Martin Hoffstede 2.9%

Angelo Roulini 2.6%

Sal Valliger 1.2%

© FUOC • P07/M2101/02709 64 Free Software

• A first group of people with clear philosophical and historical connotati-

ons within the world of free software (although, as we know, they may

also have notable technical skills):

1) Linus Torvalds. Creator of the Linux kernel, the most used free operating

system, and co-author of Just for fun: the story of an accidental revolutionary

[217].

2) Richard Stallman. Ideologist and founder of the Free Software Foundation

and developer on various GNU projects. Author of several important es-

says on the world of free software ("Why free software is better than open

source", 1998 [206], "Copyleft: pragmatic idealism", 1998 [205], "The GNU

Project" [208] and "The GNU Manifesto", 1985 [117]).

3) Miguel de Icaza. co-founder of the GNOME project and Ximian Inc., and

developer of part of GNOME and of MONO.

4) Eric Raymond. Promoter of the Open Source Initiative, author of "The cat-

hedral and the bazaar" [192] and main developer of Fetchmail.

5) Bruce Perens. Former leader of the Debian project, promoter (converted)

of the Open Source Initiative and developer of the e-fence tool.

6) Jamie Zawinsky. Ex developer of Mozilla and famous for a letter of 1999

in which he left the Mozilla project arguing that the model they were

following would never bear fruit ("Resignation and postmortem", 1999)

[237].

7) Mathias Ettrich. Founder of KDE and developer of LyX and others.

• A second group consisting of developers. This survey took the names of

the leading developers of the six most popular projects according to the

FreshMeat free software applications index. We can see that (with the ex-

ception of Linus Torvalds, for obvious reasons, and Jörg Schilling) the level

of awareness of these developers is small:

1) Jörg Schilling, creator of cdrecord, among other applications.

2) Marco Pesenti Gritti, main developer of Galeon.

3) Bryan Andrews, developer of Apache Toolbox.

4) Guenther Bartsch, creator of Xine.

© FUOC • P07/M2101/02709 65 Free Software

5) Arpad Gereoffy, developer of MPEGPlayer.

• A third group consisting of the names of the three last "people" in the

table. These names were invented by the survey team in order to check

the margin of error.

We can draw two conclusions from the results: the first is that we can consider

the margin of error to be small (less than 3%), and the second is that most

developers of the most popular free software applications are as well-known

as people who do not exist. This data should make those who allege that one

of the main reasons for developing free software is fame-seeking think twice.

4.8. Summary and conclusions

This chapter has attempted to shed some light on the largely unknown issue

of the people who dedicate time to free software. In general terms, we can say

that a free software developer is a young male with a university qualification

(or on the way to getting one). The relationship between the world of free

software and universities (students and professors) is very close, although the

developer who has nothing to do with the academic sphere still predominates.

In terms of hours of dedication, we have shown that there is an enormous

disparity, similar to what is postulated in the Pareto law. Developers' moti-

vations, in their own opinion, are far from being monetary and egocentric,

as economists and psychologists tend to suggest, and are mostly to do with

sharing and learning. Finally, we have shown a table of the most significant

personalities in the world of free software (including others who were not so

well-known, as we have seen) and shown that reputation in the enormous free

software community tends to depend on more than just coding a successful

free software application.

© FUOC • P07/M2101/02709 66 Free Software

5. Economy

"Res publica non dominetur."

"Public things have no owner." (free translation)

Appeared in an IBM advert about Linux (2003)

This chapter looks at some economic aspects related to free software. We will

start by showing how free software projects are financed (when they are inde-

ed financed, since in many cases they rely solely on efforts and resources con-

tributed voluntarily). Next, we will look at the main business models put into

practice by companies directly associated to free software. The chapter ends

with a small study of the relationship between free software and the software

industry's monopolies.

5.1. Funding free software projects

Free software is developed in many different ways and using mechanisms to

obtain funds that vary enormously from case to case. Every free project has

its own way of financing itself, from the one consisting totally of volunteer

developers and using only altruistically ceded funds, to the one carried out by

a company that invoices 100% of its costs to an organisation interested in the

corresponding development.

In this section, we will focus on the projects where there is external funding

and not all the work is voluntary. In these cases, there is normally some form

of cashflow from an external source to the project, responsible for providing

funds for its development. This way, the free software that is built may be

considered, to some extent, to be the product of this external funding. This

is why it is common for that external source to decide (at least in part) how

the funds are spent and on what.

In some way, this external funding for free projects can be considered a kind of

sponsorship, although this sponsorship has no reason for being disinterested

(and usually it is not). In the following sections we discuss the most common

types of external funding. However, while learning about them, we should re-

member that these are just some of the ways that free software projects obtain

resources. But there are others, and of these the most important one (as we

have seen in chapter 4) is the work of many volunteer developers.

5.1.1. Public funding

A very special type of financing for free projects is public funding. The funding

body may be a government directly (local, regional, national or even supra-

national) or a public institution (for example, a foundation). In these cases,

© FUOC • P07/M2101/02709 67 Free Software

the funding tends to be similar as for research and development projects, and

in fact it is common for the funding to come from public bodies that promo-

te R+D. Normally, the funding body will not seek to recover the investment

(or at least not directly), although it tends to have clear objectives (such as

promoting the creation of an industrial or research-based fabric, promoting a

certain technology or a certain type of application, etc.).

In most of these cases, there is no explicit financing of products or services

related to free software, but rather this tends to be the sub-product of a con-

tract with other more general objectives. For example, as part of its research

programs, the European Commission funds projects aimed at improving Eu-

ropean competitiveness in certain fields. Some of these projects have as part

of their objectives to use, improve and create free software within the scope

of the research (as a research tool or a product derived from it).

The motivations for this type of financing are very varied, but we can distin-

guish the following:

1) Scientific. This is the most frequent one in the case of publicly funded

research projects. Although its objective is not to produce software but

rather to investigate a specific field (whether IT-related or not), it is likely

to require programs to be developed as tools for achieving the project's

objectives. Usually the project is not interested in commercialising these

tools, or may even be actively interested in other groups using and impro-

ving them. In such cases, it is fairly common to distribute them as free

software. In this way, the group conducting the research has partly dedi-

cated funds to producing this software, so we can say that it has been de-

veloped with public funding.

2) Promoting standards. Having a reference implementation is one of the

best ways of promoting a standard. In many cases this involves having

programs that form part of said implementation (or if the standard refers

to the software field, to be the implementation themselves). For the refe-

rence implementation to be useful in promoting the standard, it needs to

be available, at least in order to check interoperativity for all those wishing

to develop products that subscribe to that standard. And in many cases

it is also advisable for manufacturers to be able to adapt the reference im-

plementation directly in order to use it with their products if they wish.

This is how, for example, the Internet protocols were developed, which

have now become a universal norm. In such cases, releasing reference im-

plementations as free software can contribute enormously towards that

promotion. Once again, free software here is a sub-product, in the case of

promoting a standard. And normally the party responsible for this promo-

tion is a public body (although sometimes it may be a private consortium).

3) Social. Free software is a very interesting tool for creating the basic infras-

tructure for the information society. Organisations interested in using free

© FUOC • P07/M2101/02709 68 Free Software

software to promote universal access to the information society can finan-

ce projects related to it (normally with projects for developing new appli-

cations or adapting already existing ones).

Note

An example of public financing for a primarily social objective is the case of LinEx, pro-
med by the Extremadura Regional Government (Extremadura, Spain) in order to promo-
te the information society fundamentally in terms of computer literacy. The Regional
Government has financed the development of a distribution based on Debian in order
to achieve this objective. Another similar case is the German government funding of
GnuPG developments, aimed at making them easier to use for inexperienced users, with
the idea of promoting the use of secure mail by its citizens.

The development of GNAT

A notorious case of public financing for a free software development is the case of the
GNAT compiler. GNAT, the Ada compiler, was financed by the Ada 9X project of the
US Department of Defence, with the idea of having a compiler of the new version of
the Ada programming language (which would later become Ada 95), which it was trying
to promote at that time. One of the causes identified in relation to software compani-
es adopting Ada's first version (Ada 83) was the late availability of a language compiler
and its high cost when it was finally released. Therefore, they tried to prevent the same
thing from happening with Ada 95, ensuring that the compiler was ready almost simul-
taneously with the release of the language's new standard.

To do so, Ada 9X contracted a project with a team from the University of New York
(NYU), for an approximate value of one million USD, to carry out a "concept test" of
the Ada 95 compiler. Using these funds, and taking advantage of the existence of GCC
(GNU's C compiler, of which most of the back end was used), the NYU team effectively
built the first Ada 95 compiler, which it released under the GNU GPL. The compiler was
so successful that when the project was finished some of its creators founded a company
(Ada Core Technologies), which since then has become the market leader in compilers
and help tools for building programs in Ada.

In this project it is worthy to note the combination of research elements (in fact, this
project advanced knowledge on the building of front ends and run time systems for
Ada-type language compilers) and promotion of standards (which was the funding body's
clearest objective).

5.1.2. Private not-for-profit funding

This type of funding has many similar characteristics to the previous type,

which is normally conducted by foundations or non-governmental organisa-

tions. Direct motivation in these cases tends to be to produce free software

for use in a sphere that the funding body considers particularly relevant, but

we may also find the indirect motivation of contributing to problem-solving

(for example, a foundation that promotes research into a disease may finance

the construction of a statistics program that helps to analyse the experimental

groups used as part of the research into that disease).

In general, both the motives and the mechanisms for this type of funding are

very similar to those of public funding, although naturally they are always in

the context of the funding body's objectives.

© FUOC • P07/M2101/02709 69 Free Software

Note

Probably, the archetypal case of a foundation that promotes the development of free
software is the Free Software Foundation (FSF). Since the mid-1980s this foundation is
dedicated to promoting the GNU project and to encouraging the development of free
software in general.

Another interesting case, although in a rather separate field, is the Open Bioinformatics
Foundation. The objectives of this foundation include promoting the development of
basic computer programs for research in any of the branches of bioinformatics. An in
general, it promotes this by financing and contributing to the construction of free pro-
grams.

5.1.3. Financing by someone requiring improvements

Another type of financing the development of free software, which is not quite

so altruistic, takes place when someone needs to make improvements to a free

product. For example, for internal use, a company may need a certain program

to have a particular functionality or to correct a few bugs. In these cases, it is

common for the company in question to contract the required development.

This development is often free software (whether because the licence of the

modified program imposes it, or because the company decides it).

The case of Corel and Wine

Towards the end of the 1990s, Corel decided to port its products to GNU/Linux. During
this process it discovered that a free program designed to facilitate the execution of bina-
ries for Windows in Linux environments could help to make considerable development
savings. But in order to do so, it had to be improved, fundamentally by adding the emu-
lation of some Windows functionality that the Corel programs used.

For this, Corel contracted Macadamian, which contributed its improvements to the Wine
project. This way, both Corel and Wine benefited.

5.1.4. Funding with related benefits

With this type of financing, the funding body aims to obtain benefits from

products related to the program whose development it funds. Normally, in

these cases the benefits obtained by the funding body are not exclusive, since

others can also enter the market for selling the related products, but either

the market share it captures is sufficient for it not to worry too much about

sharing the pie with others, or it has a clear competitive advantage.

Some examples of products related to a particular software are as follows:

• Books. The company in question sells manuals, user guides, course mate-

rials, etc. related to the free program that it helps to finance. Of course,

other companies can also sell related books, but normally financing the

project will give the company early access to key developers before the

competition, or simply provide a good image towards the user community

of the program in question.

• Hardware. If a company funds the development of free systems for a cer-

tain type of hardware, it can more easily dedicate itself to selling that type

© FUOC • P07/M2101/02709 70 Free Software

of hardware. Once again, since the software developed is free, competitors

selling the same type of devices may appear, that use the same develop-

ments without having collaborated in the funding. But even so, the com-

pany in question has several advantages over its competitors, and one of

them may be that its position as a source of funding for the project allows

it to exert influence so that priority is given to the developments in which

it is most interested.

• CD with programs. Probably, the best known model of this type is the

one of companies financing certain developments that they then apply to

their software distribution. For example, having a good desktop environ-

ment can help a lot to sell a CD with a certain distribution of GNU/Linux,

and therefore, financing its development could be a good business for the

party selling the CDs.

We need to bear in mind that under this heading the financing in question has

to be made with a profit motive, and therefore the funding body has to obtain

a potential benefit from the financing. In reality, however, it is common for

there to be a combination of profit motive and altruism when a company

provides funds for a free program to be made from which it expects to benefit

indirectly.

Note

A well-known case of funds contributed to a project, albeit fairly indirectly, is the help
that the O'Reilly publishing house gives to the development of Perl. Naturally, it is no
coincidence that O'Reilly is also one of the main publishers of subjects related to Perl.
In any case, it is obvious that O'Reilly does not have exclusivity over the publication of
books of this kind, and that other publishing houses compete in this market segment,
with varying degrees of success.

VA Software (originally VA Research and later VA Linux) has collaborated actively in de-
veloping the Linux kernel. Through this, it has achieved, among others, ensured conti-
nuity, which was particularly critical for it in relation to its customers when its main
business was selling equipment with a GNU/Linux pre-installation.

Red Hat has financed the development of many GNOME components, essentially obtai-
ning a desktop environment for its distribution, which has contributed to increasing its
sales. As in previous cases, other manufacturers of distributions have benefited from this
development, although many of them have not collaborated with the GNOME project
to the same extent as Red Hat (and quite a few have not collaborated at all). Despite this
fact, Red Hat benefits from its contribution to GNOME.

5.1.5. Financing as an internal investment

There are companies that develop free software directly as part of their busi-

ness model. For example, a company may decide to start a new free project in

a field where it believes that there are business opportunities, with the idea of

subsequently making a return on that investment. This model could be con-

sidered a variation of the previous one (indirect financing), and the "related

benefits" would be the advantages that the company obtains from producing

the free program. But since in this case it is the free product itself which is ex-

pected to produce the benefits, it seems appropriate to give it its own heading.

© FUOC • P07/M2101/02709 71 Free Software

This type of financing gives rise to various business models. When we analy-

se them (in section 5.2) we will also explain the advantages that a company

normally obtains from this type of investment in a project and what methods

tend to be used in order to make it profitable. But in any case, we should

mention that sometimes the software in question may be developed simply

in order to satisfy the company's own needs, and that only later the company

may decide to release it, and perhaps, to open a business line based on it.

Note

Digital Creations (now Zope Corporation) is one of the most well-known cases of a com-
pany dedicated to developing free software with the expectation of making a return on
its investment. The free project that Zope invests most heavily in is an applications server
that is enjoying a certain amount of success. Its history with free software started when
the then Digital Creations was looking for venture capital to develop its proprietary ap-
plications server, around 1998. One of the groups most interested in investing in them
(Opticality Ventures) established as a condition that the resulting product must be free,
because otherwise they did not see how they could obtain a significant market share.
Digital Creations agreed to this approach and a few months later announced the first
version of Zope (it changed its name a few years later). Nowadays, Zope Corporation is
specialised in consulting, training and support for content management systems based
on Zope, and other products of which Zope is unquestionably the cornerstone.

Ximian (formerly Helix Code) is a well-known case of free applications development in
a business environment. Closely linked since its origins to the GNOME project, Ximi-
an has produced software systems such as Evolution (a personal information manager
which includes a relatively similar functionality to Microsoft Outlook), Red Carpet (an
easy-to-use system for managing packages on an operating system) and MONO (an im-
plementation of a large part of .NET). The company was founded in October 1999 and
attracted many developers from GNOME, who became members of its development te-
am (while continuing in many cases to collaborate with the GNOME project). Ximian
positioned itself as an engineering company expert in GNOME adaptations, in building
applications based on GNOME, and in general, in providing development services based
on free software, especially tools related to the desktop environment. In August 2003,
Ximian was bought by Novell.

Cisco Enterprise Print System (CEPS) (http://ceps.sourceforge.net/) [17] is a printing ma-
nagement system for organisations that use very many printers. It was developed inter-
nally in Cisco to satisfy its own needs and freed in 2000 under the GNU GPL. It is difficult
to know for sure what Cisco's reasons for doing this were, but they could be related to
finding external contributions (error reports, new controllers, patches, etc.). In any case,
what is obvious is that since Cisco had no plans to commercialise the product and its
potential market was not very clear, it had very little to lose with this decision.

5.1.6. Other financing modes

There are other financing modes that are difficult to classify under the pre-

vious headings. As an example, we could mention the following:

• Use of the market for putting developers and clients in contact. The idea

that sustains this mode of financing is that, especially for minor develop-

ments, it is difficult for a client wanting a specific development to come

into contact with a developer capable of doing it in an efficient manner.

In order to improve this situation, free software development markets are

established where developers can advertise their skills and clients, the de-

velopments that they need. A developer and a client reach an agreement;

we have a similar situation to the one already described as "funding by a

party requiring improvements " (section 5.1.3).

http://ceps.sourceforge.net/

© FUOC • P07/M2101/02709 72 Free Software

SourceXchange

SourceXchange is an example of a market that put developers in contact with potenti-
al clients. To advertise a project, a client would present an RFP (request for proposal) spe-
cifying the development required and the resources it was prepared to provide for that
development. These RFPs were published on the site. When a developer read one that
interested him, he would make an offer for it. If a developer and a client agreed on the
terms of the development, a project would begin. Normally, every project was supervised
by a peer reviewer, a reviewer responsible for ensuring that the developer complied with
the specifications and that indeed the specifications made sense, and advising on how
to carry through the project, etc. SourceXchange (owned by the company CollabNet)
took charge of providing the site, guaranteeing reviewers' capabilities, ensuring payment
in the case of completed projects and offering monitoring tools (services for which it
invoiced the client). The first project mediated through SourceXchange was completed
in March 2000, but just over a year later, in April 2001, the site closed down.

• Project financing through the sale of bonds. The idea behind this type of

financing is similar to that of the ordinary bonds market approached by

companies, but targeted at developing free software. It has several varia-

tions, but one of the best known operates as follows. When a developer

(an individual or a company) has an idea for a new program, or improve-

ment for an existing program, he writes it up as a specification, with a cost

estimate for its development and issues bonds for its construction. The

value of these bonds is only executed if the project is finally completed.

When the developer has sold enough bonds, development begins, finan-

ced with loans based on them. When the development is completed, and

an independent third party certifies that indeed what has been done com-

plies with the specifications, the developer "executes" the bonds, settles

the debts, and what is left over is the profit made from the development.

Who would be interested in buying these bonds? Obviously, users who

would like the new program or improvement to the existing program to

be made. To some extent, this bonds system allows interested parties to

establish developers' priorities (at least in part), through the acquisition of

bonds. This also means that development costs do not have to be assumed

by just one company, but rather can be shared between several (including

individuals), who additionally only have to pay if the project concludes

successfully in the end. A similar mechanism to this is proposed in much

more detail in "The Wall Street performer protocol. Using software com-

pletion bonds to fund open source software development", by Chris Rasch

(1991) [191].

Bibliography

The bonds system described is based on the street performer protocol ("The street performer
protocol", in: Third USENIX Workshop on Electronic Commerce Proceedings, 1998 [152], and
"The street performer protocol and digital copyrights", 1999 [153]), a mechanism based
on e-commerce designed to facilitate private funding of free creations. In short, whoe-
ver is interested in a particular job would formally promise to pay a certain amount if
the work is done and published as free. Its objective is to find a new way of financing
relatively small jobs that are made available to everyone, but may be extended in many
ways (the bonds for the construction of free software being one of them). We can see
a small case of putting a derivation of this protocol into practice, the rational street per-
former protocol (Paul Harrison, 2002, [137]) where http://www.csse.monash.edu.au/~pfh/
circle/funding_results.htmlit is applied to obtaining funds to finance part of The Circle,
a free software project.

http://www.csse.monash.edu.au/~pfh/circle/funding_results.html
http://www.csse.monash.edu.au/~pfh/circle/funding_results.html

© FUOC • P07/M2101/02709 73 Free Software

• Developer cooperatives. In this case, free software developers, instead of

working individually or for a company, join some form of association (nor-

mally similar to a cooperative). In all other aspects, it functions the same

way as a company, with an overtone of its ethical commitment to free

software, which may form part of its company statutes (although an ordi-

nary company can do this too). In this type of organisation, we may see

a variety of combinations of voluntary and paid work. An example is Free

Developers.

• Donations system. This involves enabling a mechanism for paying the

author of a particular software, through the web page that accommodates

the project. This way, users interested in the project continuing to release

new versions can support it financially by making voluntary donations in

the way of funding for the developer.

5.2. Business models based on free software

In addition to the project funding mechanisms that we have already talked

about, another aspect related to the economy which deserves mentioning is

business models. In speaking about financing mechanisms, we have already

mentioned a few in passing. Here, in this section, we will describe them in a

more methodical fashion.

In general, we can say that many business models are being explored around

free software, some more classical and others more innovative. We need to

take into account that of the most common models in the software industry

it is not easy to use those based on the sale of licences, since in the world of

free software this financing mechanism is very difficult to exploit. However,

we can use those based on services to third parties, with the advantage that it

is possible to offer complete support for a program without necessarily being

its producer.

Sale of free software at so much per copy

In the world of free software it is difficult to charge for licences for use, but not impossible.
In general, there is nothing in the free software definitions to prevent a company from
creating a product and only distributing it to anyone who pays a certain amount. For
example, a particular producer could decide to distribute its product with a free licence,
but only to whoever pays 1,000 euros per copy (like in the classical world of proprietary
software).

However, although theoretically this is possible, in practice it is difficult for this to occur.
Because once the producer has sold the first copy, whoever receives it may be motivated
to try and recover their investment by selling more copies at a lower price (something
which cannot be prohibited by the program's licence if it is free). In the previous example,
one could try selling ten copies at 100 euros each, meaning that additionally the product
would work out free of charge (also, this would make it very difficult for the original
producer to sell another copy at 1,000 euros, since the product could be legally obtained
at a tenth of the cost). It is easy to see how this process would continue in cascade until
copies were sold at a price close to the marginal cost of the copy, which with current
technologies is practically zero.

© FUOC • P07/M2101/02709 74 Free Software

Even so, and bearing in mind that the mechanism described will mean that normally a
producer cannot put a price (particularly a high price) on the mere fact of the program's
redistribution, there are business models that implicitly do just that. One example, is the
case of GNU/Linux distributions, which are sold at a much lower price in comparison
with proprietary competitors, but above (and normally far above) the cost of the copy
(even when it can be freely downloaded from the Internet). Of course, in these cases other
factors come into play, such as the brand image or convenience for the consumer. But
this is not the only case. Therefore, rather than saying that free software "cannot be sold
at so much per copy", we should bear in mind that it is more difficult to do so, and that
probably it will generate less profit, but that there can be models based precisely on that.

Given these limitations (and these advantages), for several years now variati-

ons on the usual business models in the software industry are being tried out,

at the same time as other more innovative solutions are sought for exploiting

the possibilities offered by free software. No doubt, in the next few years we

will see even more experimentation in this field, and will also have more in-

formation on what models can work and under what circumstances.

In this section we offer a panorama of the business models that we most fre-

quently encounter today, divided into groups with the intention of showing

the reader what they share in common and what distinguishes them, focu-

sing on those based on the development and services around a free software

product. Revenue, in this case, comes directly from the development activiti-

es and services for the product, but does not necessarily imply new product

development. When this development does occur, these models have the fi-

nancing of free software products as a subproduct, meaning that they are par-

ticularly interesting models with a potentially large impact on the world of

free software in general.

In any case, and although here we offer a relatively clear classification, we

must not forget that almost all companies in reality use combinations of the

models that we describe, with each other and with other more traditional

ones.

5.2.1. Better knowledge

The company that follows this business model tries to make a return on its

knowledge of a free product (or set of products). Its revenue will come from

clients to which it will sell services related to that knowledge: developments

based on the product, modifications, adaptations, installations and integrati-

ons with other products. The company's competitive advantage will be closely

related to its better knowledge of the product: therefore, the company will be

particularly well positioned if it is the producer or an active participant in the

production project.

This is one of the reasons why companies that use this model tend to be active

participants in the projects related to the software in respect of which they

try to sell services: it is a very efficient way of obtaining knowledge about it,

and more importantly, for that knowledge to be recognised. Certainly, being

© FUOC • P07/M2101/02709 75 Free Software

able to tell a client that the company's employees include various developers

on the project that produces the software, which, for example, needs to be

changed, tends to provide a good guarantee.

Relationship with development projects

Therefore, companies of this type are very interested in transmitting an image of having
good knowledge of certain free products. An interesting outcome of this is that support
for free software projects (for example, by participating actively in them, or allowing
employees to do so in the course of the working day) is not therefore, something purely
philanthropic. On the contrary, it may be one of the company's most profitable assets,
since clients will value it very positively as a clear sign that the company is knowledgeable
about the product in question. Plus, this way it will be able to follow the development
closely, trying to make sure, for example, that the improvements requested by its clients
become part of the product developed by the project.

Analysing this from a more general point of view, this is a situation in which both parties,
the company and the project, benefit from the collaboration. The project benefits from
the development made by the company, or because some of its developers are paid (at
least part-time) for their work on the project. The company benefits in knowledge about
the product, image towards its clients, and a degree of influence over the project.

The range of services provided by this type of company can be very broad, but

normally consists of customised developments, adaptations or integrations

of the products that they are experts in, or consulting services where they

advise their clients how best to use the product in question (especially if it is

a complex product or its correct functioning is critical for the client).

Examples

Examples of companies that up to a point have used this business model include the
following:

• LinuxCare (http://www.linuxcare.com) [45]. Established in 1996, it originally provi-
ded consulting services and support for GNU/Linux and free software in the US, and
its staff consisted essentially of experts in GNU/Linux. However, in 1992 its objec-
tives changed and since then it has specialised in providing services almost exclusi-
vely to GNU/Linux running on z/VM virtual machines in large IBM computers. Its
business model has also changed to "better knowledge with limitations", since as a
fundamental part of its services it offers a non-free application, Levanta.

• Alcôve (http://www.alcove.com) [3]. Established in 1997 in France, it mainly offers
free software consulting services, strategic consulting, support and development. Sin-
ce its foundation, Alcôve has kept the developers of various free projects on staff,
trying to make a return on this in terms of image. It has also tried to offer an image,
in general, of a company linked to the free software community, by collaborating, for
example, with user associations and giving publicity to its collaborations with free
projects (for example, through Alcôve-Labs http://www.alcove-labs.org [4]).

5.2.2. Better knowledge with limitations

These models are similar to those described in the previous section, but try to

limit the competition that they may have to face. Whereas in the pure models

based on better knowledge, anyone can, in principle, join the competition,

since the software used is the same (and free), in this case the attempt is to

avoid that situation by placing barriers to competition. These barriers tend to

consist of patents or proprietary licences, which normally affect a small (but

http://www.linuxcare.com/
http://www.alcove.com/

© FUOC • P07/M2101/02709 76 Free Software

fundamental) part of the developed product. This is why these models may

be considered in reality as mixed, in the sense that they are halfway between

free software and proprietary software.

In many cases, the free software community develops its own version, mea-

ning that the competitive advantage can disappear, or even turn against the

company in question if the free competitor becomes the market standard and

is demanded by the company's own clients.

Examples

There are many cases that use this business model, since it is frequently considered less
risky than the pure knowledge one. However, the companies that have used it have evol-
ved in different ways. Some of them include the following:

• Caldera (http://www.sco.com) [16]. Caldera's history is complicated. In the begin-
ning, it created its own distribution of GNU/Linux, aimed at businesses: Caldera
OpenLinux. In 2001 it bought the Unix division from SCO, and in 2002 it changed
its name to SCO Group. Its business strategy has changed as frequently as its name,
from its total support for GNU/Linux, to its legal suits against IBM and Red Hat in
2003 and abandoning its own distribution. But in relation to this heading, Caldera's
business, at least until 2002, is a clear model of better knowledge with limitations.
Caldera tried to exploit its knowledge of the GNU/Linux platform, but limiting the
competition it could have faced by including proprietary software in its distribution.
This made it difficult for its clients to change distribution once they had adopted it,
because even though the other distributions of GNU/Linux included the free part of
Caldera OpenLinux, they did not include the proprietary part.

• Ximian (http://ximian.com/) [74]. Founded in 1999 under the name Helix Code by
developers closely connected to the GNOME project, it was bought in August 2003
by Novell. Most of the software that it has developed has been free (in general, part
of GNOME). However, in a very specific sphere Ximian decided to licence a compo-
nent as proprietary software: the Connector for Exchange. This module allows one
of its star products, Evolution (a personal information manager that includes e-mail,
agenda, calendar, etc.,), to interact with Microsoft Exchange servers, which are com-
monly used by large organisations. This is how it tried to compete with an advanta-
ge over the other companies that offered services based on GNOME, perhaps with
the products developed by Ximian itself but that could not interact as easily with
Exchange. With the exception of this product, the Ximian model has been the one
of "better knowledge", and has also been based on being the source of a program (as
we will see later on). In any case, this component was freed in 2005.

5.2.3. Source of a free product

This model is similar to the one based on better knowledge but with a specia-

lisation, meaning that the company using it is the producer, almost integrally,

of a free product. Naturally, the competitive advantage increases through

being the developers of the product in question, controlling its evolution and

having it before the competition. All of this positions the development com-

pany very strongly towards clients who are seeking services for that program.

Also, it is a very interesting model in terms of image, since the company has

proven its development potential by creating and maintaining the applicati-

on in question, which can be very useful when it comes to convincing clients

of the company's capabilities. Likewise, it creates a good image towards the

free software community in general, since it receives a new free product from

the company that becomes part of the common domain.

http://www.sco.com/
http://ximian.com/

© FUOC • P07/M2101/02709 77 Free Software

Examples

Many free products started to be developed in a company, and very often that company
has continued to guide its subsequent development. As an example, we would mention
the following cases:

• Ximian. We have already mentioned how it has partly used the model of better know-
ledge with limitations. But in general, Ximian has followed the clear model based on
being the source of free programs. Its main products, like Evolution or Red Carpet,
have been distributed under GPL licences. However, other also important ones, such
as MONO, are distributed mostly under the MIT X11 or LGPL licences. In any case,
Ximian has developed the products almost exclusively from the start. The company
has tried to make a return on these developments by obtaining contracts to make
them evolve in certain ways, adapting them to clients' needs, and offering customi-
sation and maintenance.

• Zope Corporation (http://www.zope.com/) [75]. In 1995 Digital Creations was esta-
blished, developing a proprietary product for the management of classified ads on
the web. In 1997 it received a capital injection from, among others, a venture capi-
tal company called Opticality Ventures. What was strange about this investment (at
that time) was the condition that was imposed of distributing the evolved product as
free software, which later became Zope, one of the most popular content managers
on the Internet. Since then, the company's business model has been to produce Zo-
pe and related products, and to offer adaptation and maintenance services for all of
them. Zope Corporation has also known how to create a dynamic community of free
software developers around its products and to collaborate actively with them.

5.2.4. Product source with limitations

This model is similar to the previous one, but takes measures to limit the

competition or to maximise revenue. Among the most common limitations,

we can find the following:

• Proprietary distribution for a time, then free. With or without a promise of

a later free distribution, each new version of the product is sold as propri-

etary software. After a certain amount of time (normally, when a new ver-

sion is released, also as proprietary software), the old version is distributed

with a free licence. This way, the production company obtains revenue

from clients interested in having the new versions, and at the same time

limits the competition, since any company wanting to compete using that

product can only do so with the free version (only available when the new

proprietary version is released, which is supposedly improved and more

complete).

• Limited distribution for a period. In this case, the software is free as of

the moment it is first distributed. But because there is nothing in the free

licence obliging to distribute the program to anyone who wants it (this

is something that the person in possession of the software may or may

not do), the producer distributes for a time to its clients only, who pay

for it (normally in the form of a maintenance contract). After a while, it

distributes it to anyone, for example by placing it in a public access file.

This way, the producer obtains income from its clients, who perceive this

preferential availability of the software as an added value. Naturally, the

http://www.zope.com/

© FUOC • P07/M2101/02709 78 Free Software

model only works if the clients do not in turn make the program public

when they receive it. For certain types of clients, this may not be common.

In general, in these cases the development companies obtain the mentioned

benefits, but not at zero cost. Because of the delay with which the product

is available for the free software community, it is practically impossible for it

to be able to contribute to its development, meaning that the producer will

benefit very little from external contributions.

Examples

Some companies that use this business model are as follows:

• artofcode LLC (http://artofcode.com/) [9]. Since the year 2000, artofcode sells Ghosts-
cript in three versions (previously Alladin Enterprises had done this with a similar
model). The latest version is distributed as AFPL Ghostscript, under a proprietary
licence (which allows use and non-commercial distribution). The next one (with a
year's delay more or less) is distributed as GNU Ghostscript, under the GNU GPL. For
example, in summer 2003, the AFPL version is 8.11 (released on 16th August), whi-
le the GNU version is 7.07 (distributed as such on 17th May, but whose equivalent
AFPL version is dated 2002). Also, artofcode offers a third version, with a proprietary
licence that allows its integration with products not compatible with the GNU GPL
(in this case it uses a dual model, which we will describe later on).

• Ada Core Technologies (http://www.gnat.com/) [2]. It was established in 1994 by the
authors of the first Ada 95 compiler, developed with partial funding from the US
Government, based on GCC, the GNU compiler. Since the beginning its products
have been free software. But most of them are first offered to their clients, as part
of a maintenance contract. For example, its compiler, which continues to be based
on GCC and is distributed under the GNU GPL, is offered to its clients as GNAT
Pro. Ada Core Technologies does not offer this compiler to the general public by any
means, and normally you cannot find versions of it on the Net. However, with a
varying delay (of about one year), Ada Core Technologies offers the public versions of
its compiler, very similar but without any type of support, in an anonymous FTP file.

5.2.5. Special licences

Under these models, the company produces a product that it distributes under

two or more licences. At least one of them is free software, but the others are

typically proprietary and allow the product to be sold in a more or less traditi-

onal way. Normally, these sales are complemented with the sale of consulting

services and developments related to the product. For example, a company

can distribute a product as free software under the GNU GPL, but also offer a

proprietary version (simultaneously, and with no delay between the two ver-

sions) for those not wanting the conditions of the GPL, for example, because

they want to integrate the product with a proprietary one (which the GPL

does not allow).

http://artofcode.com/
http://www.gnat.com/

© FUOC • P07/M2101/02709 79 Free Software

Example

Sleepycat Software (http://www.sleepycat.com/download/oslicense.html) [60]. This
company was established in 1996 and has announced that it has made a profit from
the start (which is certainly remarkable in a software- related company). Its products,
including Berkeley DB (a very popular data manager because it can be easily embedded
in other applications), are distributed under a free licence that specifies that in the case
of embedding with another product, it has to provide the source code of both. Sleepycat
offers consulting and development services for its products, but also offers them under
licences that allow them to be embedded without having to distribute the source code. Of
course, it does this under a specific contract, and in general, under a proprietary software
sales regime. In 2005, Sleepycat Software was bought by Oracle.

5.2.6. Brand sale

Although it is possible to obtain very similar products for far less money, many

clients are prepared to pay extra to buy a brand. This principle is adopted by

companies that invest in establishing a brand with a good and well-recognised

image that allows them to then sell free products with a sufficient margin.

In many cases, they do not just sell those products, but also services that the

clients will also accept as an added value.

The most well-known cases of this business model are the companies that

sell GNU/Linux distributions. These companies try to sell something that in

general can be obtained at a far lower cost from the Net (or others sources

with less of a brand image). Therefore, they have to make consumers recognise

their brand and be prepared to pay the additional cost. To do so, they don't

just invest in publicity, they also offer objective advantages (for example, a

well-assembled distribution or a distribution channel that offers proximity to

the client). Also, they tend to offer a large number of services around it (from

training to third party certification programs), in order to make the most of

the brand image.

Example

Red Hat (http://www.redhat.com) [56]. Red Hat Linux started to be distributed in 1994
(the company started to be known by its current name in 1995). For a long time, Red Hat
managed to establish its name as the GNU/Linux distribution par excellence (although
in the mid 2000 it shares that position with other companies like OpenSUSE, Ubuntu,
and perhaps Debian). Several years down the line Red Hat sells all types of services related
to the distribution, GNU/Linux and free software in general.

5.3. Other business model classifications

Free software literature provides other classifications of traditional business

models. As an example, here are a few.

5.3.1. Hecker classification

The classification provided in "Setting up shop: the business of open source

software" (Frank Hecker, 1998) [141] was most used in the publicity of the

Open Source Initiative, and also one of the first to try and classify the busines-

ses that were emerging around that time. However, it includes various models

http://www.sleepycat.com/download/oslicense.html
http://www.redhat.com/

© FUOC • P07/M2101/02709 80 Free Software

that have little to do with free software (where free software is little more than

a companion to the main model). In any case, the models it describes are as

follows:

• Support seller (sale of services related to the product). The company pro-

motes a free product (which it has developed or in which it participates

actively) and sells services such as consulting or adaptation to specific re-

quirements.

• Loss leader (sale of other proprietary products). In this case, the free pro-

gram is used to somehow promote the sale of other proprietary products

related to it.

• Widget frosting (Sale of hardware). The main business is the sale of hardwa-

re and the free software is considered a complement that can help the

company obtain a competitive advantage.

• Accessorizing (sale of accessories). Products related to free software are sold,

such as books, computer devices, etc.

• Service enabler (sale of services). The free software serves to create a service

(normally accessible online) from which the company makes a profit.

• Brand licensing (sale of a brand). A company registers trademarks that it

manages to associate with free programs, probably that it has developed

itself. Then it obtains income through licensing the use of those trade-

marks.

• Sell it, free it. This is a similar model to the loss leader, but done in a cyclical

fashion. First a product is marketed as free software. If it is relatively suc-

cessful, the next version is distributed as proprietary software for a time,

after which it is freed. By then, a new proprietary version is being distri-

buted, and so on successively.

• Software franchising. A company franchises the use of its brands in relation

to a particular free program.

5.4. Impact on monopoly situations

The software market tends towards the domination of one product in each

of its segments. Users want to make the most of the effort made in learning

how a program works, companies want to recruit people who are familiar with

the use of their software, and everyone wants the data that they handle to

be manageable by the programs of the companies and people with whom

they work. This is why any initiative designed to crack a de facto situation in

which one product clearly dominates the market is destined to produce more

Note

Readers will have observed
that this classification is fairly
different to the one that we
have given, but even so some
of the categories almost totally
match some of ours.

© FUOC • P07/M2101/02709 81 Free Software

of the same: if it is successful, the new product will come to take its place, and

in a short period we will have a new dominant product. Only technological

changes produce, during a short period, sufficient instability for nobody to

dominate clearly.

But the fact that there is a dominant product does not necessarily have to

lead to the creation of a business monopoly. For example, petrol is a product

that almost dominates the fuel market for private cars, but (in a free petrol

market) there are many production companies and distribution companies for

that same product. In reality, when we talk about software, what is worrying

is what happens when a product manages to dominate the market because

that product has a sole possible supplier. Free software offers an alternative to

that situation: free products can be promoted by a specific company, but that

company does not control them, or at least not to the extent that proprietary

software has us accustomed to. In the world of free software, a dominant pro-

duct does not necessarily entail the monopoly of one company. On the con-

trary, irrespective of the product that dominates the market, many companies

can compete in providing it, improving it, adapting it to clients' needs and

offering services related to it.

5.4.1. Elements that favour dominant products

In computer software, it is common for there to be a clearly dominant product

in each market segment. And this is normal for several reasons, among which

we would highlight the following:

• Data formats. In many cases the data format is very closely linked to an

application. When a sufficiently high number of people uses it, the data

format becomes the de facto standard, and the pressures to adopt it (and

therefore, the application) are tremendous.

• Distribution chains. Normally, one of the problems with starting to use

a program is obtaining a copy of it. And it is normally difficult to find

programs that are not leaders in their market. Distribution chains are ex-

pensive to maintain, meaning that it is difficult for minority competitors

to reach the computer shop where the end user can buy them. However,

for the dominant product it is easy: the first to be interested in having it

will be the computer shop itself.

• Marketing. The "free" marketing that a product obtains once a significant

proportion of the population uses it is enormous. "Word of mouth" also

works very well when we ask and exchange information with the people

we know. But above all the impact from the media is enormous: computer

magazines will refer time and again to a product if it appears to be the one

used the most; there will be training courses around it, books describing

it, interviews with users, etc.

© FUOC • P07/M2101/02709 82 Free Software

• Investment in training. Once time and money has been spent on learning

how a tool functions, there is a high motivation not to change that tool.

Also, that tool is usually the one that already dominates the market, be-

cause it is easier to find people and materials to help teach how to use it.

• Pre-installed software. Receiving a machine with pre-installed software is

certainly a great incentive towards using it, even if it has to be paid for se-

parately. And normally, the type of software that the seller of the machine

will be prepared to pre-install will only be the most used.

5.4.2. The world of proprietary software

In the world of proprietary software the appearance of a dominant product

in any segment is equivalent to a monopoly on the part of the company that

produces it. For example, we have these de facto monopoly situations (or al-

most) of a product and a company in the market for operating systems, desk-

top publishing, databases, graphic design, text processors, spreadsheets, etc.

And this is so because the company in question has enormous control over

the leading product, so much so that only they can mark its evolution, the

fundamental lines along which it will be developed, its quality, etc. Users have

very little control, since they have very little motivation to test with other

products (for the reasons we have mentioned in the preceding section). In

view of this, there is little that they can do, except to try and defy the product's

dominant position by improving their own products, (to try and counteract

those very reasons), normally with limited success.

This situation places the entire sector in the hands of the dominant company's

strategy. All of the actors depend on it, and even the development of software

technology in that field will be mediatised for the improvements that it makes

to its product. In general terms, this is a situation where the worst economic

effects of a monopoly arise, and in particular, the lack of motivation for the

dominant company to tailor products to the (always evolving) needs of its

clients, as they have become a captive market.

5.4.3. The situation with free software

However, in the case of free software a dominant product does not automati-

cally translate into a business monopoly. If the product is free, any company

can work with it, improve on it, adapt it to clients' needs, and in general, help

it to evolve. Also, precisely due to its dominant position, there will be many

companies interested in working with it. If the "original" producer (the com-

pany that originally developed the product) wishes to remain in the business,

it will have to compete with all of them and will therefore be highly motivated

© FUOC • P07/M2101/02709 83 Free Software

to make its product evolve precisely along the lines that users want. Of course,

it will have the advantage of better knowledge of the program, but that isn't

all. They will have to compete for every client.

Therefore, the appearance of dominant products in the world of free software,

translates into more competition between companies. And with it users retake

control: companies in competition cannot do anything but listen to them if

they want to survive. And this is precisely what will make sure that the product

improves.

Free products that are dominant in their sector

For a long time, Apache has been the leader in the market for web servers. But there are
many companies behind Apache, from some very large ones (like IBM) to other much
smaller ones. And all of them have no other choice but to compete by improving it and
normally by contributing to the project with their improvements. Despite the fact that
Apache is almost a monopoly in many fields (for example, it is almost the only web
server considered on the GNU/Linux or *BSD platform), it does not depend on a single
company, but rather on literally dozens of them.

The distributions of GNU/Linux are also an interesting case. GNU/Linux is not, certainly,
a monopoly, but is possibly the second choice in the market for operating systems. And
this has not forced a situation whereby one company has control over it. On the contrary
there are tens of distributions made by different companies, which freely compete in the
market. Each one of them tries to offer improvements, which its competitors have to
adopt at the risk of being left out. Moreover, they cannot stray too far from what is the
"GNU/Linux standard", since this would be rejected by users as a "departure from the
norm ". The situation after several years of a growing market share for GNU/Linux shows
us tens of companies that compete and allow the system to evolve. And once again, all
of them pursue satisfying users' requirements. This is the only way that they can stay
in the market.

GCC is a dominant product in the world of C and C++ compilers for the GNU/Linux
market. And yet, this has not led to any company monopoly situation, even though Cyg-
nus (now Red Hat) was responsible for a long time for coordinating its development. The-
re are many companies that make improvements to the system and all of them compete,
each in their specific niche, to satisfy their users' demands. In fact, when a specific com-
pany or organisation has failed in the task of coordinating (or some users have perceived
this to be the case) there has been room for the project to fork, with two products running
in parallel for a while, until they have come back together again (as is now happening
with GCC 3.x).

5.4.4. Strategies for becoming a monopoly with free software

Despite the fact that the world of free software is much more hostile to busi-

ness monopolies than the world of proprietary software, there are strategies

that a company can use to try to approach a situation of monopolistic domi-

nance of a market. These practices are common in many other economic sec-

tors and in order to prevent them we have bodies that regulate competition,

which is why we will not go into too much detail about them. However, we

will mention one that, up to a point, is specific to the software market, and

which has already been experienced in certain situations: the acceptance of

third party product certification.

When a company wishes to distribute a software product (free or proprietary)

that functions in combination with others, it is common to "certify" that pro-

duct for a certain combination. The manufacturer undertakes to offer services

(updates, support, problem-solving, etc.) only if the client guarantees that the

© FUOC • P07/M2101/02709 84 Free Software

product is being used in a certified environment. For example, the manufac-

turer of a database management program can certify its product for a certain

GNU/Linux distribution, and no other. This implies that its clients will have

to use that GNU/Linux distribution or forget having the manufacturer's sup-

port (which, if the product is proprietary may be impossible in practice). If

a particular manufacturer manages to achieve a clearly dominant position as

a third-party certified product, users are not going to have any other choice

than to use that product. If in that segment certification is important, we will

once again be facing a business monopoly situation.

Note

Up to a point, in the market for GNU/Linux distributions we are starting to see a few ca-
ses of situations tending towards a de facto monopoly through certification. For example,
there are many manufacturers of proprietary products that only certify their products
over a given GNU/Linux distribution (very commonly Red Hat Linux). For the time being
this is not resulting in a monopoly situation for any company, which may be due to the
fact that certification is not so relevant for users in the market for GNU/Linux distribu-
tions. But only the future will tell if at some point this situation approaches a de facto
monopoly.

Nonetheless, it is important to bear in mind two comments in relation to the

above. The first is that these monopoly positions will not be easy to achieve,

and in any case will be achieved through "non-software" mechanisms in gene-

ral (unlike the dominant product situation, which as we have seen is relatively

normal, reached through mechanisms purely related to IT and its patterns of

use). The second is that if all the software used is free, that strategy has limited

chances of succeeding (if any at all). A manufacturer may manage to get lots

of companies to certify for its products, but clients will always be able to look

to different companies for services and support other than those that have

certified for it, if they consider it appropriate.

© FUOC • P07/M2101/02709 85 Free Software

6. Free software and public administrations

"[...] for software to be acceptable for the State, it does not only need to be technically
capable of performing a task, but also its contracting conditions need to meet a series
of requirements regarding licensing, without which the State cannot guarantee to its
citizens that their data is being adequately processed, with due regard for confidentiality
and accessibility over time, because these are highly critical aspects of its normal duty."

Edgar David Villanueva Núñez (letter of reply to the general manager of Microsoft Peru,
2001)

Public institutions, both those with the capacity to legislate and those dedi-

cated to administrating the State (the "public administrations"), play a very

important role where adopting and promoting technologies is concerned. Alt-

hough in 2000 these institutions showed practically no interest in the free

software phenomenon (save for anecdotal cases), the situation started chan-

ging as of then. On the one hand, many public administrations started using

free software as part of their IT infrastructure. On the other hand, in their ro-

le as promoters of the information society, some started to promote directly

or indirectly the development and use of free software. Also, some legislative

bodies have started paying attention (bit by bit) to free software, sometimes

favouring its development, sometimes impeding it, and sometimes just taking

its presence into consideration.

Before going into detail, it is important to remember that for a long time free

software was developed without explicit backing (or even interest) from public

institutions. For this reason, the recent attention that it is drawing from many

of them is not without controversy, confusion and problems. Also, in the last

few years initiatives related to open standards are gaining momentum, often

resulting in measures (more or less directly) associated to free software.

In this chapter we will try to describe the current situation and the peculiarities

of free software in relation to the "public" sphere.

6.1. Impact on the public administrations

Several studies have been made focusing on the use of free software in public

administrations (for example, "Open source software for the public adminis-

tration", 2004 [159]; "Open source software in e-Government, analysis and

recommendations drawn up by a working group under the Danish board of

technology", 2002 [180]; "Free software / open source: information society op-

portunities for Europe?", 1999 [132], and "The case for government promotion

of open source software", 1999 [213]). Next, we will discuss some of the most

notable ones (both positive and negative).

© FUOC • P07/M2101/02709 86 Free Software

6.1.1. Advantages and positive implications

Some of the advantages of using free software in public administrations and

the main new prospects that it offers are as follows:

1) Developing local industry

One of the major advantages of free software is the possibility of developing a

local software industry. When we use proprietary software, everything spent

on the licences goes directly to the product's manufacturer, and the purchase

strengthens the manufacturer's position, which is not necessarily negative, but

is not very efficient for the region to which the Administration is associated

when we consider the alternative of using a free program.

In this case, local companies will be able to compete in providing services (and

the program itself) to the Administration, under very similar conditions to

any other company. Let's say that somehow the Administration is levelling the

playing field and making it easier for anyone to compete on it. And of course,

that "anyone" includes local companies, who will have the opportunity to

exploit their competitive advantages (better knowledge of the client's needs,

geographical proximity, etc.).

2) Independence from a supplier and market competition

Obviously, any organisation will prefer to depend on a competitive market

than on a single provider capable of imposing the conditions under which

it supplies its product. However, in the world of the Public Administration,

this preference becomes a basic requirement, and even a legal obligation in

some cases. In general, the Administration cannot choose to contract a given

supplier, but rather must specify its requirements in such a way that any in-

terested company that fulfils certain characteristics and that offers the requi-

red product or service, can opt for a contract.

Once again, in the case of proprietary software, each product has just one sup-

plier (even if it uses a number of intermediaries). If a particular product is spe-

cified, then the Administration will also be deciding what provider to award

the contract. And in many cases it is virtually impossible to avoid specifying

a particular product, when we are dealing with computer programs. Reasons

of compatibility within the organisation or savings in training and adminis-

tration, or many more, make it common for an administration to decide to

use a certain product.

The only way out of this situation is by making the specified product free. This

way, any interested company will be able to supply it and also any type of ser-

vice related to it (subject only to the company's capabilities and knowledge of

© FUOC • P07/M2101/02709 87 Free Software

the product). Also, in the case of this type of contracting, the Administration

can change supplier in future if it wishes, and without any technical problems,

since even if it changes company, it will still be using the same product.

3) Flexibility and adaptation to exact requirements

Although adaptation to exact requirements is something that any organisati-

on using computers needs, the peculiarities of the Administration make this

a very important factor in the successful implantation of a software system.

In the case of free software, the adaptation is made much easier, and more

importantly, can rely on a competitive market if contracting it is necessary.

When the Administration buys a proprietary product, modifying it normally

involves reaching an agreement with the manufacturer, who is the only party

that can legally (and often technically) do it. Under these circumstances, it is

difficult to negotiate, especially if the manufacturer is not excessively interes-

ted in the market offered by that particular administration. However, by using

a free product, the Administration can modify it as it wishes, if it employs

capable personnel, or outsource the modification. In principle, this outsour-

cing is possible with any company that has the skills and knowledge to do so,

meaning that several companies can be expected to compete. Naturally, this

tends to make the cost cheaper and improve the quality.

The case of GNU/Linux distributions

In the last few years in Spain, it has become common for certain autonomous commu-
nities to create their own GNU/Linux distributions. This trend started with GNU/Linux,
but nowadays there are many more. Although some experts have criticised the existence
of these distributions, it is a clear example of the flexibility that free software allows. Any
public administration, by spending relatively moderate resources, can contract a GNU/
Linux adaptation adapted to its needs and preferences, without practically any limits. For
example, it can change the desktop appearance, choose the set of default applications
and language, improve the applications' localisation, etc. In other words: if wanted, the
desktop (and any other software element that works on the computer) can be adapted
to precise requirements.

Of course, this adaptation will involve some expenditure, but experience shows that
it can be achieved relatively cheaply, and the trend appears to indicate that it will be
increasingly easier (and cheaper) to make customised distributions.

4) Easier adoption of open standards

Given their very nature, free programs commonly use open or non-proprie-

tary standards. In fact, almost by definition, any aspect of a free program that

we may care to consider can be reproduced easily and, therefore, is not pri-

vate. For example, the protocols used by a free program in order to interact

with other programs can be studied and reproduced, meaning that they are

not proprietary. But also, quite commonly and in the interest of the projects

themselves, we try to use open standards.

© FUOC • P07/M2101/02709 88 Free Software

In any case, irrespective of the motive, it is a fact that free programs normally

use non-proprietary standards for data exchange. The advantages of this for

public administrations are more far-reaching than for any other organisation,

since the promotion of proprietary standards (even indirectly, by using them)

is much more of a concern in their case. And in at least one aspect, the use

of non-proprietary standards is fundamental, where interaction with citizens

is concerned, since they should not be forced to purchase any product from a

particular company in order to be able to interact with the administration.

5) Public scrutiny of security

For a public administration, being able to guarantee that its computer systems

only do what they have to is a fundamental obligation, and in many countri-

es, a legal requirement. Often these systems handle private data, which third

parties could be interested in (for example tax data, criminal records, census

or electoral data, etc.). If a proprietary application is used, without source code

available, it is difficult to guarantee that the application will process the data

in the way that it should. But even if it does provide its source code, the pos-

sibilities of a public institution ensuring that it does not contain strange code

will be very limited. Only if the task can be habitually and routinely commis-

sioned to third parties, and plus any interested party can scrutinise it, can the

Administration be reasonably sure that it is complying with its fundamental

duty, or at least taking the measures within its power to do so.

6)�Availability in the long term

Much of the data processed by the administrations, and the programs used

to calculate them, need to be available within decades and decades. It is very

difficult to guarantee that any proprietary program will be available after this

time, especially if the idea is for it to work on the usual platform at that time

in the future. On the contrary, it is possible that the manufacturer may have

lost interest in the product and has not ported it to new platforms, or is only

prepared to do so for a lot of money. Once again, we need to remember that

only the manufacturer can port the product, meaning that negotiations will

be difficult. In the case of free software, however, the application is available,

with certainty, so that anyone can port it and leave it functioning according

to the needs of the Administration. If this does not happen spontaneously,

the Administration can always look for several companies to make the best

offer to do the job. This guarantees that the application and the data that it

processes will be available when needed.

7) Impact beyond use on the part of the Administration

© FUOC • P07/M2101/02709 89 Free Software

Many applications used or promoted by the public administrations are also

used by many other sectors of society. For this reason, any public investment

in the development of a free product benefits not only the administration

itself, but also all its citizens, who will be able to use the product for their

computer tasks, perhaps with the improvements made by the Administration.

Note

A very particular case, but one with enormous impact, which displays this better use of
public resources is program localisation (adaptation to a community's uses and customs).
Although the most visible aspect of localisation is the translation of the program and
its documentation, there are others that are also affected by it (from use of the local
currency symbol to presenting the date and time in the formats of the community in
question, to the use of examples in the documentation and ways of expression adapted
to local customs).

In any case, obviously if a public administration uses funds to localise a particular ap-
plication tailoring the application to its needs, it is more than likely that those needs
coincide with those of its citizens, meaning that it will generate, not only a program
that satisfies its own requirements, but also, one that can be made available to any citi-
zen able to make the most of it at no additional cost. For example, when an administra-
tion finances the adaptation of a computer program to a language that is used within
its community, it will not only be able to use that program within its own offices, but
also offer it to citizens, with everything that this involves in terms of developing the
information society.

6.1.2. Difficulties of adoption and other problems

However, although there are many advantages for the administration using

free software, there are also many difficulties that need to be faced when it

comes to putting it into practice. Of them, we would particularly mention the

following:

1) Lack of knowledge and political commitment

The first problem that free software encounters for entering the adminis-

tration is one that other organisations undoubtedly share: free software is

still an unknown quantity for the people who make the decisions.

Fortunately, this is a problem that is gradually being solved, but in many

spheres of the administration free software is still perceived as something

strange, so decisions about using it still involve certain risks.

In addition to this, we tend to come a cross a problem of political decisi-

on-making. The main advantage of free software for the Administration

is not the cost (since the cost, in any case, is high, especially when we are

talking about a roll-out for a large number of workstations), but as we have

already said, benefits are above all strategic. And therefore, the decision

falls within the political, rather than the technical sphere. Without the

political will to change software systems and the philosophy with which

they are contracted, it is difficult to progress with the implantation of free

software in the Administration.

2) Poor adaptation of contracting mechanisms

The contracting mechanisms that the Administration uses nowadays, ran-

ging from the usual public tender models to cost itemising, are funda-

Bibliography

Readers interested in a report
on the advantages of free
software for the administrati-
on, written in the US context
of 1999, can consult "The ca-
se for government promoti-
on of open source software"
(Mitch Stoltz, 1999) [213].

© FUOC • P07/M2101/02709 90 Free Software

mentally designed for the purchase of IT products and not so much for

the purchase of services related to programs. However, when we use free

software, normally there is no product to be bought, or its price is negli-

gible. In contrast, to take advantage of the opportunities provided by free

software, it is convenient to be able to contract services around it. This

makes it necessary, before free software can be seriously used, to design

bureaucratic mechanisms that facilitate contracting in these cases.

3) Lack of implantation strategy

Often an administration may start to use free software simply because the

purchase cost is lower. It is common in these cases for the product in ques-

tion to be incorporated into the computer system with no further plan-

ning, and in general, without a global strategy for using and making the

most of the free software. This causes most of its benefits to be lost along

the way, since everything boils down to the use of a cheaper product, whe-

reas we have already seen that, in general, the major benefits are of a dif-

ferent type.

If added to this, the transition is not properly designed, the use of free

software can incur considerable costs, and we will see that in certain iso-

lated cases, outside of a clear framework, the use of free software in the

Administration can be unsuccessful and frustrating.

4) Scarcity or lack of free products in certain segments

The implantation of free software in any organisation can encounter the

lack of free quality alternatives for certain types of applications. For these

cases, the solution is complicated: all that we can do is try to promote the

appearance of the free product that we need.

Fortunately, public administrations are in a good position to study se-

riously whether they may be interested in promoting or even financing or

co-financing, the development of that product. We should remember that

its objectives normally include providing its citizens with better access to

the information society, for example, or promoting the local industrial

fabric. Certainly, the creation of many free programs will have a positive

influence on both objectives, meaning that we should add to the mere

direct cost/benefit calculation, the indirect benefits that such a decision

will have.

5) Interoperability with existing systems

It is not common for a full migration to free software to be made with

the entire system at the same time. Therefore, it is important for the part

that we want to migrate to continue functioning correctly in the context

of the rest of the software with which it will have to interoperate. This

is a well-known problem with any migration (even if it is a proprietary

product), but it can have a particular impact in the case of free software.

In any case, it will be something to be taken into account when studying

the transition. Fortunately, we can often adapt the free software that ne-

eds to be installed to interoperate adequately with other systems, but if

© FUOC • P07/M2101/02709 91 Free Software

this is needed, this point will have to be considered when budgeting the

migration costs.

6) Data migration

This is a generic problem of any migration to new applications that use

different data formats, even if they are proprietary. In fact, in the case of

free software this problem is often mitigated, since it is usual to make a

special effort to foresee as many formats and data exchange standards as

possible. But normally the data has to be migrated. And the cost of doing

this is high. Therefore, in calculating the cost of a potential migration to

free software, this factor needs to be carefully considered.

6.2. Actions of the public administrations in the world of free

software

Public administrations influence the world of software in at least three ways:

• By buying programs and services related to them. Administrations, as large

users of software, are fundamental players in the software market.

• By promoting different ways of using (and purchasing) certain programs

in society. This promotion is sometimes achieved by offering financial in-

centives (tax deductions, direct incentives, etc.), sometimes through in-

formation and advice, sometimes by "follow my example"...

• By financing (directly or indirectly) research and development projects

that design the future of software.

In each of these spheres free software can offer specific advantages (in addition

to those already described in the preceding section) of interest to both the

Administration and to society in general.

6.2.1. How to satisfy the needs of the public administrations?

Public administrations are large consumers of IT. Where software is concerned,

they normally buy mass consumption (off-the-shelf) products as well as custo-

mised systems. From this point of view, they are fundamentally large purcha-

sing centres, similar to those of big companies, but with their own peculiar

features. For example, in many spheres, the purchasing decisions of the public

administrations are supposed to take into consideration not only cost versus

functionality parameters, but also others, such as the impact of the purchase

on the industrial or social fabric or long term strategic considerations, which

can also be important.

© FUOC • P07/M2101/02709 92 Free Software

In any case, the usual nowadays with off-the-shelf software is to use market

leader proprietary products. The amount of public money spent by town halls,

autonomous communities, the central Administration and European admi-

nistrations on purchasing Windows, Office or other similar product licences

is certainly considerable. But gradually free solutions are starting to penetrate

the market. Increasingly, solutions based on free software are being considered

for servers, and products such as OpenOffice, and GNU/Linux with GNOME

or KDE are increasingly used for the desktop.

What is there to be gained from this migration to free software? To illustra-

te just what, let's consider the following scenario. Let's suppose that with a

fraction of what is spent on two or three "star" proprietary products by all the

European administrations (or probably those of any medium-sized developed

country), we could convene a public tender for one company (or two, or three,

or four) to improve and adapt the currently available free programs so that

within one or two years they would be ready for massive use, at least for cer-

tain standard tasks (if they are not already). Let's imagine for example, a co-

ordinated effort, on a national or European scale, whereby all the administra-

tions participated in a consortium responsible for managing these tenders. In

a short period of time there would be a "local" industry specialised in making

these improvements and adaptations. And the administrations could choose

between the three or four free distributions produced by that industry. In or-

der to promote competition, each company could be compensated according

to the number of administrations that chose to use their distribution. And the

entire result of this operation, because it would be free software, would also

be available for companies and individual users, which in many cases would

have similar needs to the administrations'.

In the case of customised software, the normal process currently involves con-

tracting the necessary programs from a company under a proprietary model.

Any development made at the Administration's request is the property of the

company that develops it. And normally, the contracting administration is

tied to the supplier in everything related to improvements, updates, and sup-

port, in a vicious circle that makes competition difficult and slows down the

process of modernising public administrations. Even worse, is that often the

same program is sold time and again to similar administrations, applying in

each case the costs incurred for making the development from scratch.

Let's consider again how things could be different. A consortium of public ad-

ministrations needing a particular type of customised software could demand

that the obtained result be free software. This would allow other administra-

tions to benefit from the work and in the medium term may interest them in

collaborating in the consortium so that their particular requirements could be

taken into consideration. Because the resulting software would be free, there

would be no obligation to contract the improvements and adaptations to the

same supplier, meaning that competition would enter the market (which at

© FUOC • P07/M2101/02709 93 Free Software

present is almost captive). And in all events, the final cost for any of the ad-

ministrations involved would never be more than if a proprietary model had

been adopted.

Are these scenarios science fiction? As we will see later, there are timid initiati-

ves in similar directions to the ones described. In addition to helping to create

and maintain an industry within the sphere of the purchasing public admi-

nistration, free software offers more specific advantages in the public domain.

For example, it is the most efficient way of having software developed in mi-

nority languages (a basic concern of many public administrations). It can also

help a lot towards maintaining strategic independence in the long term and

ensuring the accessibility of the data in public administrations' custody for a

long time. For all of these reasons, public bodies are increasingly interested in

free software as users.

Some cases related to German administrations

In July 2003 the first stable version of Kolab was released, a product of the Kroupware pro-
ject. Kolab is a free IT help system for group work (groupware) based on KDE. The reason
for mentioning this project is that originally it was a tender by the German government's
Bundesamt für Sicherheit in der Informationstechnik (BSI - translated as the Federal Of-
fice for Information Security '). This tender sought a solution that would interoperate
with Windows and Outlook on the one hand, and GNU/Linux and KDE on the other.
Of the submitted bids, the joint proposal of three companies, Erfrakon, Intevation and
Klarälvdalens Datakonsult, was awarded the contract, with their proposal to provide a
free solution partly based on software already developed by the KDE project, completed
with its own free developments, resulting in Kolab.

In May 2003, the Town Hall of Munich (Germany) approved the migration to GNU/Li-
nux and free office suite applications for all desktop computers, about fourteen thousand
in total. The decision to do this was not purely financial: strategic and qualitative aspects
were also taken into consideration, according to the authorities. In the comprehensive
analysis that was carried out prior to making the decision, the solution that was finally
chosen (GNU/Linux plus OpenOffice, fundamentally) obtained 6,218 points (from a ma-
ximum of ten thousand) as opposed to the little more than five thousand points obtai-
ned by the "traditional" solution based on Microsoft software.

In July 2003, the Koordinierungs-und Beratungsstelle der Bundesregierung für Informa-
tionstechnik in der Bundesverwaltung (KBSt), under the German Ministry of the Interior,
made public the document Leitfaden für die Migration von Basissoftwarekomponenten auf
Server- und Arbeitsplatzsystemen [107] ('Migration guide for the basic software components
of servers and workstations'), which offers German public bodies a set of guidelines to on
how to migrate to solutions based on free software. These guidelines are designed for the
decision-making party to evaluate whether a migration to free software is appropriate
and how to carry out the migration if that decision is made.

6.2.2. Promotion of the information society

Public bodies spend a lot of money on incentives to encourage IT spending.

This is a formidable tool, which can help new technologies to expand in soci-

ety. But it is also a dangerous tool. For example, it may not be a very good idea

to promote society's use of the Internet by recommending a particular navi-

gator encouraging one company's de facto monopoly position, because in the

long term this could be negative for the society that we are trying to benefit.

© FUOC • P07/M2101/02709 94 Free Software

Once again, free software can help in these situations. In the first place, it is

neutral towards manufacturers, since nobody has the exclusivity over any free

program. If an administration wishes to promote the use of a family of free

programs, it can convene a tender, which any company in the sector can bid

for, to manage its delivery to citizens, its improvement or extended functio-

nality, etc. Secondly, it can help a lot in economic aspects. For example, in

many cases the same amount of funds can be spent on purchasing a certain

number of licences for proprietary programs as for purchasing one free copy

and contracting support or adaptations for it; or even on negotiating with a

proprietary software manufacturer for the rights to convert its product into

free software.

In a separate field, we could imagine dedicating part of the amount alloca-

ted for the computerisation of schools to creating a GNU/Linux distribution

adapted to primary schools' teaching requirements. And with the rest of the

funds contracting support for maintaining the software in those schools, so

that the software is not merely "for show" but rather people are genuinely res-

ponsible for ensuring that it works correctly. This not only covers educational

requirements but also generates a market for companies, usually local ones,

capable of providing maintenance services. And of course, it leaves the path

to the future completely open: the software will not become obsolete in just

a few years meaning that we need to start over from scratch, rather it can

be updated incrementally, year after year, maintaining the program's benefits

with a similar investment.

Note

Readers who are familiar with public initiatives in respect of free software will recognise
the case of LinEx in this example. Towards the end of 2001 the Regional Government of
Extremadura (Spain) decided to use a GNU/Linux distribution in order to computerise
all of the public schools in the region. To do so, it financed the construction of LinEx, a
GNU/Linux distribution based on Debian that was announced in spring 2002, and made
sure that it was a requirement in all tenders for purchasing schools' computer equipment.
Also, it started training programs for teachers, creating teaching materials and expanding
the experience into other fields. In mid- 2003, it seemed that the experience was a success,
as it expanded institutionally to other regions (for example, to Andalucía, also in Spain,
through the Guadalinex project).

6.2.3. Research promotion

Free software also provides noteworthy benefits where R+D policies are con-

cerned. Public money is being used to finance a large amount of software de-

velopment that society does not end up benefiting from, even indirectly. Usu-

ally, public research and development programs finance, wholly or in part,

projects to create software without really worrying about the rights that the

public will have over them. In many cases the results, without an adequate

commercialisation plan, are simply filed and left to gather dust. In others, the

same people who financed a program through taxes end up paying for it again

if they wish to use it (since they need to buy licences for use).

© FUOC • P07/M2101/02709 95 Free Software

Free software offers an interesting choice, which the authorities responsible for

innovation policies in many administrations are gradually starting to consider

with care. Especially when the research is pre-competitive (most common in

the case of public funding), the fact that resulting programs are free allows

industry as a whole (and consequently society) to benefit enormously from the

public money spent on R+D in the software field. Where one company may

see a result that is impossible to sell, another may see a business opportunity.

This way, on the one hand, the results of research programs are maximised,

and on the other, competition between companies wishing to use the results

of a project increases, since all of them will compete on the basis of the same

programs resulting from the project.

This model is not new. To a great extent it is the one that has allowed the

Internet to develop. If public administrations demand that the results of rese-

arch carried out with its funds is distributed in the form of free software, it

would not be surprising for similar cases to appear, on different levels. Either

the outcome of that research will be poor or useless (in which case the way

of selecting funding projects needs to be reviewed), or the dynamic generated

by leaving them ready for any company to be able to convert them into a

product would allow simply unforeseeable developments.

6.3. Examples of legislative initiatives

In the following sections we look at some specific legislative initiatives rela-

ting to the use and promotion of free software by public administrations. Of

course, the list we provide does not intend to be exhaustive, and has focused

on the initiatives that have been pioneering in some way (even if they were

not finally approved). Interested readers can complete it by consulting "GrU-

LIC. Legislation regarding the use of free software by the State" [133], which

cites many more similar cases. Also, in one appendix (appendix D) we include

for illustrative purposes, the full text or the most relevant parts of several of

these initiatives.

6.3.1. Draft laws in France

In 1999 and 2000 in France two draft laws related to free software were presen-

ted, which were pioneers in a long series of legislative debates over the issue:

• Draft law of 1999-495, proposed by Laffitte, Trégouet and Cabanel,

was made available on Senate of the French Republic's web server in

October 1999. Following a process of public debate over the Internet

(http://www.senat.fr/consult/loglibre/index.htm) [102] which lasted two

months, the Draft was modified. The result was Draft Law number 2000-

117 (Laffitte, Trégouet and Cabanel, Proposition de Loi numéro 117, Se-

nate of the French Republic, 2000) [162], which advocated the obligatory

use of free software by the Administration, contemplating exceptions and

transition measures for cases where it was not yet technically possible, in

http://www.senat.fr/consult/loglibre/index.htm

© FUOC • P07/M2101/02709 96 Free Software

the more general context of expanding the use of the Internet and free

software across the French administration.

• In April 2000, members of parliament Jean-Yves Le Déaut, Christian Paul

and Pierre Cohen proposed a new law whose objective was similar to that

of Laffitte, Trégouet and Cabanel's draft: to reinforce the freedoms and

security of consumers, in addition to improving the equality of rights in

the information society.

However, unlike the draft law of Laffitte, Trégouet and Cabanel, this se-

cond one did not make it compulsory for the Administration to use free

software. This draft law centred on the fact that the software used by the

Administration should have the source code available, but without forcing

it to be distributed with free software licences.

In order to achieve their objectives, the legislators aimed to guarantee the

software's "right to compatibility", by providing mechanisms that put into

practice the principle of interoperability reflected in EC Directive related

to the legal protection of computer programs (Council Directive 91/250/

EEC, of 14th May 1991, regarding the legal protection of computer pro-

grams, 1991) [111].

Neither of the two French drafts was passed into law, but both have served

to inspire most subsequent initiatives worldwide, which is why they are par-

ticularly interesting to study. The second one (proposed by Le Déaut, Paul

and Cohen) pursued the compatibility and interoperability of the software,

emphasising the availability of the source code for the software used by the

Administration. However, it did not require developed applications to be free

software, understood as meaning software distributed under licences that gua-

rantee the freedom to modify, use and redistribute the program.

Later on (section D.1 and section D.2 of appendix D) we reproduce almost

in full the articles and explanatory memorandums of both draft laws. The

explanatory memorandums are particularly interesting, as they highlight the

problems currently threatening the public administrations regarding the use

of software in general.

6.3.2. Draft law of Brazil

In 1999, parliament member Walter Pinheiro presented a draft law on free

software to the Federal Chamber of Brazil (Proposição pl-2269/1999. Dispõe

sobre a utilização de programas abertos pelos entes de direito público e de

direito privado sob controle acionário da administração pública, Chamber of

Deputies of Brazil, December 1999) [185]. This project concerned the use of

free software in the public administration and in private companies with the

State as majority shareholder.

© FUOC • P07/M2101/02709 97 Free Software

It recommends the use of free software by these bodies with no restrictions

in terms of lending, modification or distribution. The articles of the law des-

cribe in detail how free software is defined and how the licences that come

with it should be. The definitions coincide with the classical definition of free

software by the GNU project. The explanatory memorandum reviews the his-

tory of the GNU project, analysing its advantages and achievements. It also

refers to the current situation of free software, using the GNU/Linux operating

system as an example.

One of the most interesting parts of article one, makes very clear the sphere in

which the use of free software is proposed (bearing in mind that the definition

provided in later articles for "open program" is, as already mentioned, the same

as free software):

"The Public Administration at all levels, the powers of the Republic, state and mixed pu-
blic-private enterprises, public companies and all other public or private bodies subject
to the control of the Brazilian state are obliged to use preferably, in their computer sys-
tems and equipment, open programs, free of proprietary restrictions with regards to their
cession, modification and distribution."

6.3.3. Draft laws in Peru

In Peru, several draft projects have been proposed on the use of free software by

the public administration ("GNU Perú. Draft laws on free software in the public

administration of the Peruvian government", Congress of the Republic) [184].

The first and most renowned was proposed by congressman Edgar Villanueva

Núñez in December 2001 (Draft law on free software number 1609, December

2001) [222]. It defines free software according to the classical definition of the

four freedoms (adding perhaps more legal precision, with a definition that

specifies six characteristics to be a free program) and proposes its exclusive use

in the Peruvian administration:

"Article 2. The executive, legislative and judicial authorities, decentralised bodies and
companies where the State is the majority shareholder, will use exclusively free programs
or software in their computer systems and equipment."

Nevertheless, later on, articles 4 and 5 include certain exceptions to this rule.

In its day this draft law had a global repercussion. On the one hand, it was

the first time that an administration's exclusive use of free software had been

proposed. But even more importantly for the repercussion of this novelty, was

the epistolary exchange between congressman Villanueva and Microsoft's re-

presentation in Peru, which made allegations against the proposal. This draft

law is also interesting in relation to the position adopted by the US embassy,

which even sent through official channels a notification (attaching a report

prepared by Microsoft) to the Peruvian Congress expressing its "concern over

recent proposals by the Congress of the Republic to restrict purchases of the

Peruvian Government to open source software or free software " ("Letter to the

president of the Congress of the Republic", 2002) [147]. Among other motives,

the allegations of both Microsoft and the US Embassy tried to prove that the

© FUOC • P07/M2101/02709 98 Free Software

draft law would discriminate between different companies making impossible

the investments required in order to generate a national industry of software

creation. Villanueva argued back that the draft law did not discriminate or

favour any particular company in any way, since it did not specify who the

Administrator's supplier could be, but rather how (in what conditions) the

software would have to be provided. This reasoning is very clear for unders-

tanding how the Administration's promotion of free software does not in any

way prejudice free competition between providers.

Later on, Peruvian congressmen Edgar Villanueva Núñez and Jacques Rodrich

Ackerman presented a new draft law, number 2485, of 8th April 2002 (Draft

Law on the Use of Free Software in the Public Administration number 2485,

2002) [223], which in August 2003 was still in parliamentary proceedings. This

draft law was an evolution of Draft Law 1609 [222], from which it draws seve-

ral comments making several improvements, and may be considered a good

example of a draft law that proposes the exclusive use of free software in the

public administrations, save for certain exceptional cases. Given its relevance,

we include its full text (section D.3 of appendix D). In particular, its explana-

tory memorandum is a good summary of the characteristics that the software

used by the public administrations should have and how free software com-

plies with these characteristics better than proprietary software.

6.3.4. Draft laws in Spain

In Spain there have been several legislative initiatives related to free software.

Below, we cite a few of them:

• Decree of Measures to Promote the Knowledge Society in Andalucía

One of the most important legislative initiatives in Spain (because it has

come into force) has been unquestionably the one adopted by Andalucía.

The Decree of Measures to Promote the Knowledge Society in Andalucía

(Decree 72/2003, of 18th March of Measures to Promote the Knowledge

Society in Andalucía, 2003) [99] deals with the use of free software, fun-

damentally (but not only) in the educational context.

Among others, it promotes the preferable use of free software in public

educational centres, obliging all of the equipment purchased by these cen-

tres to be compatible with free operating systems, and likewise for the Re-

gional Government centres that provide public Internet access.

• Draft law on Free Software in the context of the Public Administration of

Catalonia

Other communities have debated more ambitious proposals, but without

obtaining the majority vote that they required. The most renowned of

them is probably the one debated in the Parliament of Catalonia (Propo-

sició de llei de programari lliure en el marc de l'Administració pública de

Catalunya, 2002) [221], very similar to the one that the same party (Es-

querra Republicana de Catalunya) presented to the Congress of Deputies,

© FUOC • P07/M2101/02709 99 Free Software

which we will talk about next. This proposal was unsuccessful when sub-

mitted for voting.

• Draft Law of Puigcercós Boixassa in the Congress of Deputies

There was also an initiative in the Congress of Deputies proposed by Jo-

an Puigcercós Boixassa (Esquerra Republicana de Catalunya) (Draft Law of

Measures for the Implantation of Free Software in the State Administrati-

on, 2002) [188]. This initiative proposed the preferable use of free software

by the State Administration, and in this sense is similar to other initiati-

ves that share this objective. However, it has the interesting peculiarity of

emphasising the availability of localised free programs for the co-official

languages (in the autonomous communities that have them). The initia-

tive was not approved in parliamentary proceedings.

© FUOC • P07/M2101/02709 100 Free Software

7. Free software engineering

"The best way to have a good idea is to have many of them."

Linus Pauling

In previous chapters we have shown why free software's challenge is not as

a competitor that generates software more quickly, more cheaply and of bet-

ter quality: free software is different from "traditional" software in more fun-

damental aspects, starting with philosophical reasons and motivations, con-

tinuing with new market and economic models, and ending with a different

way of generating software. Software engineering cannot be unaffected by all

of this and for a little more than over five years has been researching all of

these aspects in greater depth. This chapter aims to discuss the most signifi-

cant studies and the evidence that they provide, with a view to offering the

reader a vision of the state of the art and the future prospects of what we have

decided to call free software engineering.

7.1. Introduction

Although free software has been developed for several decades now, it is only

in recent years that we have started to pay attention to its development mo-

dels and processes from a software engineering perspective. In the same way

as there is no single model for proprietary software development, there is no

single model for free software5 development, but even so we can find interes-

ting characteristics that most of the projects under study share and that could

stem from the properties of free programs.

In 1997, Eric S. Raymond published the first broadly disseminated article The

cathedral and the bazaar. Musings on Linux and open source by an accidental revo-

lutionary, O'Reilly & Associates http://www.ora.com, 2001) [192], describing

some of the characteristics of free software development models, making spe-

cial emphasis on what distinguished these models from those of proprietary

development. Since then, this article has become one of the most renowned

(and criticised) in the world of free software, and up to a point, the sign of the

starting development of free software engineering.

7.2. The cathedral and the bazaar

Raymond makes an analogy between the way of building mediaeval cathedrals

and the classical way of producing software. Arguing that in both cases there

is a clear distribution of tasks and functions, emphasising the existence of a

designer who oversees everything and has to control the development of the

(5)The article "The ecology of open
source software development" (Ki-
eran Healy and Alan Schussman,
2003) [140] shows the large vari-
ety of projects and their diversity in
numbers of developers, use of to-
ols and downloads.

© FUOC • P07/M2101/02709 101 Free Software

activity at all times. At the same time, planning is strictly controlled, giving

rise to detailed processes where ideally each participant in the activity has a

clearly defined role.

What Raymond takes as the model for building cathedrals not only has room

for the heavy processes that we can find in the software industry (the classi-

cal cascade model, the different aspects of the Rational Unified Process, etc.),

but also for free software projects such as GNU and NetBSD. For Raymond,

these projects are highly centralised, since just a few people are responsible

for the software's design and implementation. The tasks carried out by these

people, in addition to their functions, are well defined, and anyone wishing

to form part of the development team needs to be assigned a task and a func-

tion according to the project's requirements. On the other hand, releases of

this type of programs are spaced in time according to a fairly strict schedule.

This means having few software releases and long cycles, consisting of several

stages between releases.

The opposite model to the cathedral is that of the bazaar. According to Ray-

mond, some of the free software programs, particularly the Linux kernel, ha-

ve been developed following a similar scheme to that of an oriental bazaar.

In a bazaar there is no maximum authority to control the processes that are

developed or to strictly plan what has to happen. At the same time, partici-

pants' roles can change continuously (sellers can become clients) and with no

outward indication.

But what is most novel about "The cathedral and the bazaar " is how it des-

cribes the process by which Linux has become a success in the world of free

software; it is a list of "good practices" to make the most of the opportunities

offered by the source code being available, and of interactivity through the

use of telematic systems and tools.

A free software project tends to appear as a result of a purely personal action;

the cause can be found in a developer who finds his ability to resolve a problem

limited. The developer needs to have enough knowledge to start solving it,

at least. Once he has obtained something usable, with some functionality,

simple, and if possible, well designed or written, the best he can do is to share

that solution with the world of free software. This is what is known as release

early, which helps to draw the attention of other people (usually developers)

who have the same problem and who may be interested in the solution.

One of the basic principles of this development model is to think of users as

co-developers. They need to be treated with care, not only because they can

provide "word of mouth" publicity but also because they will carry out one of

the most costly tasks that there is in software generation: testing. Unlike co-

development, which is difficult to scale, debugging and tests have the property

of being highly parallelizable. The user will be the one to take the software

© FUOC • P07/M2101/02709 102 Free Software

and to test it on his machine under specific conditions (an architecture, cer-

tain tools, etc.), a task that multiplied by a large number of architectures and

environments would entail an enormous effort for the development team.

If we treat users as co-developers it could happen that one of them finds a bug

and resolves it by sending a patch to the project developers so that the problem

can be solved in the following version. It can also happen, for example, that

someone other than the person who discovers the bug eventually understands

it and corrects it. In any case, all of these circumstances are beneficial for free

software's development, i.e. it is beneficial to enter a dynamic of this type.

This situation becomes more effective with frequent releases, since the moti-

vation to find, notify and correct bugs is high because it is assumed that they

will be attended to immediately. Also, secondary benefits are achieved such as

the fact that frequent integration ideally once or more times a day does not

require a final phase of integrating the modules comprising the program. This

has been called release often and allows a great modularity (Alessandro Nar-

duzzo y Alessandro Rossi, "Modularity in action: GNU/Linux and free/open

source software development model unleashed", May 2003) [176], at the same

time as it maximises the propaganda effect provided by the publication of the

software's latest version.

Note

New version management depends, logically, on the size of the project, since the pro-
blems that need to be dealt with are not the same when the development team has two
members as when it has hundreds. Whereas, in general, for small projects this process
is more or less informal, the management of releases from large projects tends to follow
a defined process, which is not exempt from a certain degree of complexity. There is an
article called "Release management within open source projects" (Justin R. Ehrenkrantz,
2003) [110] which describes in detail the sequence followed with the Apache web server,
the Linux kernel and the Subversion versions system.

In order to prevent release often from frightening users with a priority for the

stability of the software over the speed with which the software evolves, some

free software projects have several development branches running in parallel.

The most renowned case of this is the Linux kernel, which has a stable branch

directed at those who value its reliability and another unstable one designed

for developers with the latest innovations and novelties.

7.3. Leadership and decision-making in the bazaar

Raymond suggests that all free software projects should have a benevolent dic-

tator, a sort of leader who is normally the founder of the project to guide the

project and always have the last word when it comes to decision-making. The

skills that this person must have involve mainly knowing how to motivate

and coordinate a project, understanding users and co-developers, seeking con-

sensus and integrating everyone who has something to contribute. As you can

see, we have not mentioned technical competence among the most important

requirements, although it is never superfluous.

© FUOC • P07/M2101/02709 103 Free Software

As the size of projects and the number of developers involved with them ha-

ve grown, new ways of organising decision-making have emerged. Linux, for

example, has a hierarchical structure based on Linus Torvalds delegating res-

ponsibilities, the "benevolent dictator". And, we will see that there are parts of

Linux that have their own "benevolent dictators", although their power will

be limited by the fact that Linus Torvalds has the last word. This case is a clear

example of how a high level of modularity in a free software project has given

rise to a specific way of organising things and making decisions (Alessandro

Narduzzo and Alessandro Rossi, "Modularity in action: GNU/Linux and free/

open source software development model unleashed", 2003) [176].

Note

Some people claim that the way free software projects are organised is similar to a sur-
gical team, as proposed by Harlan Mills (of IBM) in the early seventies popularised by
Brooks in his famous book The mythical man-month (Frederick P. Brooks Jr., 1975) [150].
Although there may be cases where the development team of a particular free software
application consists of a designer/developer (the surgeon) and many co-developers who
perform auxiliary tasks (systems administration, maintenance, specialised tasks, docu-
mentation.) there is never such a strict and defined separation as the one suggested by
Mills and Brooks. In all events, as Brooks points out in the case of the surgical team, with
free software the number of developers that need to communicate in order to create a
big and complex system, is much lower than the total number of developers.

In the case of the Apache Foundation, we have a meritocracy, since this insti-

tution has a directors' committee consisting of people who have contributed

in a notable way to the project. In reality, it is not a strict meritocracy in the

sense of those who most contribute govern, since the directors' committee is

elected democratically and regularly by the Foundation's members (responsi-

ble for managing various free software projects, like Apache, Jakarta, etc.). To

become a member of the Apache Foundation, you need to have contributed

in an important and continuous way to one or several of the Foundation's

projects. This system is also employed by other large projects, such as FreeBSD

or GNOME.

Another interesting case of formal organisation is the GCC Steering Commit-

tee. It was created in 1998 to avoid anyone obtaining control over the GCC

project (GNU Compiler Collection, GNU's compiler system) and backed by

the FSF (promoter of the GNU project) a few months later. In a certain sense,

this committee continues the tradition of a similar one that the EGCS project

had (which for a time ran in parallel to the GCC project, but later joined it).

Its fundamental mission is to ensure that the GCC project fulfils the project's

mission statement. The committee's members are members in a private capa-

city, and are selected by the project itself in such a way as to faithfully repre-

sent, the different communities that collaborate in the GCC's development

(support developers for several languages, developers related to the kernel,

groups interested in embedded programming, etc.).

The same person does not have to be the leader of a free software project fore-

ver. Basically, there can be two circumstances in which the project leader stops

being so. The first is lack of interest, time or motivation to continue. In this

© FUOC • P07/M2101/02709 104 Free Software

case, the baton must be passed to another developer who will assume the role

of project leader. Recent studies (Jesús M. González Barahona and Gregorio

Robles, 2003) [87] show that, in general, project leadership frequently chan-

ges hands, in such a way that we can see several generations of developers over

time. The second case is more problematic: it involves a forking. Free software

licences allow code to be taken, modified and redistributed by anybody wit-

hout requiring the project leader's approval. This does not normally tend to

happen, except in cases where the idea is to deliberately avoid the project le-

ader (and the leader's potential veto against a contribution). This is similar on

the one hand to a sort of "coup d´etat", which on the other hand is totally licit

and legitimate. For this reason, one of a project leader's objectives in keeping

co-developers satisfied is to minimise the possibility of a forking.

7.4. Free software processes

Although free software is not necessarily associated with a specific software de-

velopment process, there is a broad consensus about the processes that it most

commonly uses. This does not mean that no free software projects have been

created using classical processes, such as the cascade model. In general, the

development model of free software projects tends to be more informal, due

mostly to the fact that a large share of the development team performs these

tasks voluntarily and in exchange for no financial reward, at least directly.

The way of capturing requisites in the world of free software depends as much

on the "age" as on the size of the project. In the early stages, the project's

founder and the user tend to be the same person. Later on, and if the project

expands, the capture of requisites tends to take place through electronic mai-

ling lists and a clear distinction tends to be reached between the development

team, or at least, the more active developers and the users. For large projects,

with many users and many developers, requisites are captured using the same

tool as the one used for managing the project's bugs. In this case, instead of

dealing with bugs, they refer to activities, although the mechanism used for

managing them is identical to the one for debugging (they will be classified

in order of importance, dependency, , etc., and it will be possible to monitor

whether they have been resolved or not). The use of this planning tool is fairly

recent, so we can see how the world of free software has evolved somewhat

from a total lack, to a centralised system for managing these activities in engi-

neering terms, even if it is certainly more limited. In all events, it is not usual

to find a document that gathers the requisites, as is normally the case in the

cascade model.

As for the system's global design, only large projects tend to have it documen-

ted in comprehensive detail. For the rest, the main developer or developers

are most likely the only ones to have it, in their head, or taking shape as sub-

sequent software versions are released. The lack of a detailed design not only

imposes limitations regarding the possible reuse of modules, but also is a large

obstacle when it comes to giving new developers access, since they will have

© FUOC • P07/M2101/02709 105 Free Software

to face a costly and slow learning process. Having a detailed design is not very

common either. The lack of it means that many opportunities for reusing co-

de are lost.

Implementation is the phase where free software developers concentrate most

effort, among other reasons because in their view it is clearly the most fun.

To do this, the classical programming model of trial and error is normally ob-

served until the desired results are achieved from the programmer's subjecti-

ve point of view. Historically, it is rare for unitary tests to be included toget-

her with the code, even when they would make modification or inclusion of

subsequent code by other developers easier. In the case of certain large pro-

jects, such as Mozilla for example, there are machines exclusively dedicated

to downloading repositories containing the most recent code to compile it

for different architectures ("An overview of the software engineering process

and tools in the Mozilla project", 2002) [193]. Detected bugs are notified to a

mailing list of developers.

However, automatic tests are not an entrenched practice. In general, users

themselves, with their enormous range of uses, architectures and combinati-

ons, will carry them out. This has the advantage of running them in parallel

at a minimum cost for the development team. The problem with this model

is how to obtain feedback from users and organise it as efficiently as possible.

As far as software maintenance in the world of free software is concerned,

understood as the maintenance of previous versions, having this task will de-

pend on the project. For projects that need stability, such as operating system

kernels, previous versions are maintained, since changing to a new version

can be traumatic. But in general, with most free software projects, if a bug is

found in a previous version developers will usually ignore it and advise using

the latest version in the hope that the bug has disappeared with the software's

evolution.

7.5. Criticism of ''The cathedral and the bazaar''

"The cathedral and the bazaar" suffers from not being systematic and a lack of

rigour given its journalistic rather than scientific nature. The most frequent

criticisms refer to the fact that it basically explains the particular case of the

Linux experience and aims to extend those conclusions to all free software

projects. In this sense, in "Cave or community? An empirical examination

of 100 mature open source projects" [160] we can see that the existence of a

community as large as the community of the Linux kernel is an exception

rather than the rule.

Even more critical are those who believe that Linux is an example of the cat-

hedral development model. They argue that obviously there is a driving for-

ce, or at least a person with maximum authority, and a hierarchical system

that delegates responsibility down to the labourers/programmers. Also, there

© FUOC • P07/M2101/02709 106 Free Software

is a distribution of tasks, albeit implicitly. "A second look at the cathedral and

the bazaar" [91] goes beyond and maintains, not without a certain level of

bitterness and arrogance in its reasoning, that the metaphor of the bazaar is

internally contradictory.

Another of the most criticised points of "The cathedral and the bazaar" is its

assertion that the Brooks law, which says that "adding developers to a de-

layed software project delays it even more " (The mythical man-month. Essays

on software engineering, 1975) [150], is not valid in the world of free software.

In [148] we can read how what happens in reality is that the environmental

contexts are different and that what in principle appears to be incongruent

with Brooks' law, after a more comprehensive analysis, is just a mirage.

7.6. Quantitative studies

Free software makes it possible to go deeper into the study of code and ot-

her parameters that intervene in its generation thanks to its accessibility. This

allows areas of traditional software engineering such as empirical software en-

gineering to be fostered due to the existence of a huge amount of information

that can be accessed without the need to heavily intrude in the development

of free software. The authors are convinced that this vision can contribute

enormously to the analysis and comprehension of the phenomena associated

with free software (and software in general), and that it may even, among ot-

her possibilities, manage to produce predictive software models with feedback

in real time.

The idea behind it is very simple: "given that we have the opportunity to study

an immense number of free software programs, let's do so." And in addition to

a project's present status, its past evolution is public, meaning that all of this

information, duly extracted, analysed and packaged, can serve as a knowled-

ge base that allows us to evaluate a project's state of health, helping towards

decision-making and foreseeing current and future complications.

The first quantitative study of any importance in the world of free software

dates back to 1998, although it was published in early 2000 ("The orbiten

free software survey") [127]. Its purpose was to find out in empirical terms

developers' participation in the world of free software. To do so they statis-

tically processed the assignations of authorship that authors tend to place

in the heading of source code files. The results showed that participation

was consistent with the Pareto law ("Course of Political Economy", Lausana,

1896) [182]: 80% of the code corresponds to the most active 20% of deve-

lopers, whereas the remaining 80% of developers contribute 20% of the to-

tal code. Many subsequent studies have confirmed and extended the validity

of this result to different ways of participating in the contribution of sour-

© FUOC • P07/M2101/02709 107 Free Software

ce code (mailing lists, bug notifications or even the number of downloads,

as we can see in http://www-mmd.eng.cam.ac.uk/people/fhh10/Sourceforge/

Sourceforge%20paper.pdf [145]).

Note

The fact that many economic terms appear in the study of free software engineering is
a result of the interest some economists have shown in learning about and understan-
ding what motivates volunteers to produce high value goods without usually obtaining
a direct benefit in exchange. The most well-known article is "Cooking pot markets: an
economic model for the trade in free goods and services on the Internet" [125], which
introduces the idea of the gift economy on Internet. At http://www.wikipedia.org/wiki/Pa-
reto [232] we can obtain further details on the Pareto principle and its generalisation to
the Pareto distribution. The Lorenz curve (http://www.wikipedia.org/wiki/Lorenz_curve)
[231], which graphically shows developers' participation in a project, is also interesting
as well as the Gini coefficient (http://www.wikipedia.org/wiki/Gini_coefficient) [230],
calculated on the basis of the Lorenz curve and which produces a number that shows
the system's inequality.

The tool used to conduct this study was published by its authors under a free

licence, meaning that its results can be reproduced and it can be used to con-

duct new studies.

In a later study, Koch ("Results from software engineering research into open

source development projects using public data", 2000) [158] went further and

also analysed the interactions of a free software project. The information sour-

ces were mailing lists and the repository of versions of the GNOME project. But

the most interesting aspect of the Koch study was the economic analysis. Koch

focuses on checking the validity of classical cost forecasts (function points,

COCOMO model...) and shows the problems involved in applying them, alt-

hough it does admit that the results obtained taken with due reserve do partly

match reality. He concludes that free software requires its own models and

methods of study, since known ones are not adapted to its nature. However,

obviously being able to obtain much of the data related to the development

of free software publicly, allows us to be optimistic about achieving these ob-

jectives in the near future. Koch's can be considered the first full quantitative

analysis, although it certainly lacks a clear methodology, and especially some

ad hoc tools that would have made it possible to verify its results and to study

other projects.

In the year 2000, Mockus et al. presented the first study of free software pro-

jects encompassing a full description of the development process and organi-

sational structures, with both qualitative and quantitative evidence ("What is

the context of charityware?") [172]. To do so, they used the software change

log, and bug reports, to quantify aspects of developers' participation, kernel

size, code authorship, productivity, fault density, and problem-solving inter-

vals. In a way, this study is still a classical software engineering study, save for

the fact that the data has been integrally obtained from the semi-automatic

inspection of the data that the projects offer publicly on the net. As in the case

http://www-mmd.eng.cam.ac.uk/people/fhh10/Sourceforge/Sourceforge%20paper.pdf
http://www-mmd.eng.cam.ac.uk/people/fhh10/Sourceforge/Sourceforge%20paper.pdf
http://www.wikipedia.org/wiki/Pareto
http://www.wikipedia.org/wiki/Pareto
http://www.wikipedia.org/wiki/Lorenz_curve
http://www.wikipedia.org/wiki/Gini_coefficient

© FUOC • P07/M2101/02709 108 Free Software

of "Results from software engineering research into open source development

projects using public data", 2000 [158], this article did not provide any tool or

automatic process that could be reused in future by other research teams.

In "Estimating Linux's size", 2000 [227], and "More than a gigabuck: estimating

GNU/Linux's" [228] we find a quantitative analysis of the lines of code and

programming languages used in the Red Hat distribution. González Barahona

et al. have followed these steps in a series of articles on the Debian distribution

(vid. for example "Anatomy of two GNU/Linux distributions" [88]). All of these

provide a sort of X-ray of these GNU/Linux distributions on the basis of data

provided by a tool that counts a program's physical number of lines (lines of

code that are not blank lines or comments). Aside from the spectacular result

in total lines of code (Debian version 3.0 known as Woody, has more than

one hundred million lines of code), we can see the how the number of lines is

distributed for each programming language. Being able to study the evolution

of the different Debian versions over time has thrown up some interesting

results [88]. It is worth noting that in the last five years the average package

size has remained practically constant, meaning that the natural tendency to

grow has been neutralised by the inclusion of smaller packages. At the same

time, we can see how the importance of the C programming language, though

still predominant, is declining over time, whereas script languages (Python,

PHP and Perl) and Java are experiencing an explosive growth. The "classical"

compiled languages (Pascal, Ada, Modula...) are clearly receding. Finally, these

articles include a section that shows the results obtained if we apply the clas-

sical COCOMO effort estimate model dating from the early eighties (Software

Engineering Economics, 1981) [93] and which is used by proprietary software to

estimate effort, project schedules and costs.

Although precursors, most of the studies presented in this section are fairly

limited to the projects under analysis. The methodology employed has been

adapted to the analysed project, is partly manual and occasionally the auto-

mated part can be used generally with other free software projects. This me-

ans that the effort required to study a new project is much greater, since the

method needs to be readapted and the manual tasks will have to be repeated.

For this reason, the latest efforts ("Studying the evolution of libre software

projects using publicly available data", in: Proceedings of the 3rd Workshop on

Open Source Software Engineering, 25th International Conference on Softwa-

re Engineering, Portland, EE.UU. [196] or "Automating the measurement of

open source projects", 2003 [124]) focus on creating an analysis infrastructu-

re that integrates several tools so that the process can be automated to a ma-

ximum. There are two fairly obvious reasons for doing this: the first is that

once a lot of time and effort has been invested in creating a tool to analyse

a project with special emphasis on making it generic, the effort involved in

using it for other free software projects is minimal. The second is that analy-

sis using a series of tools that study programs from different and sometimes

© FUOC • P07/M2101/02709 109 Free Software

complementary points of view, at times does not allow us to obtain a broader

vision of the project. In the Libre Software Engineering Web Site [86] we can

follow these initiatives in more detail.

7.7. Future work

Having described the brief but intense history of software engineering as ap-

plied to free software, we can say that it is still taking its first steps. Many im-

portant aspects are still pending analysis and detailed examination until we

can find a model that at least partly explains how free software is generated.

The issues that will need to be tackled in the near future include the classifica-

tion of free software projects, the creation of a methodology based inasmuch

as possible on automated analysis and the use of acquired knowledge to build

models that help us to understand how free software develops at the same

time as facilitating decision-making on the basis of acquired experience.

Another aspect that should not be overlooked and that is starting to be con-

sidered now is the validity of classical engineering methods in the field of free

software across all software engineering intensifications. Hence, for example,

the laws of software evolution postulated by Lehman ("Metrics and laws of

software evolution - the nineties view" [165]) at the beginning of the nineteen

seventies and updated and expanded on in the eighties and nineties appear

not to be fulfilled unconditionally in the development of some free software

projects ("Understanding open source software evolution: applying, breaking

and rethinking the laws of software evolution", 2003 [199]).

Currently, one of the most serious deficiencies is the lack of a strict classifica-

tion so that free software projects can be classed into different categories. At

present, the classification criteria are too broad, and projects with very dispa-

rate organisational, technical or other characteristics are all put into the same

bag. The argument that Linux, with an extensive community and large num-

ber of developers, has a different nature and does not behave in the same way

as a much more limited project in numbers of developers and users, is very

true. In all events, a more detailed classification would make it possible to

reuse the experience acquired in other similar projects (in other words, with

similar characteristics), making it easier to make forecasts, and making it pos-

sible to foresee risks, etc.

The second important aspect that free software engineering needs to tackle,

closely connected to the preceding point and current trends, is the creation of

a methodology and tools to support it. A clear and concise methodology will

make it possible to study all projects on an equal footing, discover their current

status, learn how they have evolved, and of course, classify them. Tools are

essential when it comes to dealing with this problem, since once created they

make it possible to analyse thousands of projects with minimum additional

effort. One of the objectives of free software engineering is to make it possible

to study a project in depth on the basis of a limited set of parameters showing

© FUOC • P07/M2101/02709 110 Free Software

where information on the project can be found on the Net (the address of the

software versions repository, the place where the mailing list files are stored,

the location of the bug management system, and a minimum survey). Project

managers would then be just a button away from a complete analysis, a sort

of clinical analysis that helped to diagnose a project's state of health including

at the same time indications on areas for improvement.

Once we have acquired methods, a classification and models, the opportuniti-

es arising from simulation, and to be more precise, intelligent agents, could be

enormous. Considering that our starting point is a notoriously complex sys-

tem, it would be interesting to create dynamic models on which the different

entities participating in software generation could be modelled. Obviously,

the more we know about the different elements, the more adapted to reality

our model will be. Although several proposals for free software simulation are

known, they are fairly simple and incomplete. To some extent, this is due to

the fact that there is still an enormous lack of knowledge with regards to the

interactions that take place in the generation of free software. If we manage

to correctly package and process projects' information throughout their his-

tory, the agents could become crucial for knowing what their future evolution

will be. Although there are many proposals as to how to approach this pro-

blem, one of the most advanced for now can be found at http://wwwai.wu-

wien.ac.at/~koch/oss-book/ [82].

7.8. Summary

In summary, we have tried to show in this chapter that free software engine-

ering is still a young and unexplored field. Its first steps are due to journalistic

essays that proposed, not without a certain lack of scientific rigour, a more

efficient development model, but gradually progress has been made towards a

systematic study of free software from an engineering perspective. Currently,

following several years of reports and quantitative and qualitative analysis of

free projects, an enormous effort is being made to achieve a global infrastruc-

ture that makes it possible to classify, analyse and model the project within

a limited space of time and in a partly automated manner. When analysing

free software projects stops being so costly in time and effort as it is now, it is

likely that a new stage in software engineering will begin, with a different ty-

pe of techniques appearing on the scene designed mainly to predict software

evolution and foresee potential complications.

http://wwwai.wu-wien.ac.at/~koch/oss-book/
http://wwwai.wu-wien.ac.at/~koch/oss-book/

© FUOC • P07/M2101/02709 111 Free Software

8. Development environments and technologies

"The tools we use have a profound (and devious!) influence on our thinking habits, and,
therefore, on our thinking abilities."

Edsger W. Dijkstra, "How do we tell truths that might hurt?"

Down the years free software projects have created their own (also free) tools

and systems to contribute to the development process. Although each project

follows its own rules and uses its own set of tools, there are certain practices,

environments and technologies that can be considered usual in the world of

free software development. In this chapter we will look at the most common

ones and discuss their impact on projects' management and evolution.

8.1. Description of environments, tools and systems

Before explaining about specific tools, we will define their general characte-

ristics and properties according to the task to be performed and the way de-

velopers are organised.

Firstly, although it is not necessarily a determining factor, it is common for the

environment, development tools (and even the target virtual machine, when

there is one), also to be free. This has not always been the case. For example,

the GNU project, with the objective of replacing Unix, had to be developed

on the basis of and for proprietary Unix systems until Linux and the free BSDs

appeared. Nowadays, especially when free software is developed as part of a

business model, the tendency is that the target machine can also be a propri-

etary system, often through interposed virtual machines (Java, Python, PHP,

etc.). In any case, the environment and the virtual machine need to be suffi-

ciently common and cheap to bring together enough co-developers having

the same tools.

Secondly, also in order to attract the largest possible number of co-developers,

the tools need to be simple, well known and capable of functioning on econo-

mical machines. Perhaps for these reasons the world of free software is fairly

conservative when it comes to languages, tools and environments.

In the third place, the free software development model tends to be eminently

distributed, with many potential collaborators spread all around the world. For

this reason generally asynchronous collaboration tools are necessary, which

at the same time allow the development to progress easily, irrespective of the

amount and rhythm of work of each collaborator, without delaying anyone.

© FUOC • P07/M2101/02709 112 Free Software

Finally, it is advisable to provide developers with various different architectu-

res on which they can compile and test their programs.

8.2. Languages and associated tools

Most free software is written in C language, not only because C is the natural

language of any Unix variant (usual free software platform), but also because it

is widespread, both in people's minds and in the machines (GCC is a standard

compiler installed by default in almost every distribution). Precisely for these

reasons and for its efficiency, Stallman recommends its use in GNU projects

("GNU coding standards") [203]. Other fairly similar languages are C++, also

supported by default by GCC, and Java, which has certain similarity and is po-

pular because it allows developments for virtual machines available in a wide

range of platforms. Generally, software engineering reasons are not taken into

account: in SourceForge (vid. section 8.9.1), in 2004, for every one hundred

and sixty projects in C there was one in Ada, although the latter is supposedly

a more appropriate language for developing quality programs. At the same

time, English is the lingua franca of free software developers, despite the fact

that Esperanto is a much easier language to learn with a much more logical

structure. Interpreted languages designed for the rapid prototyping of normal

applications and web services such as Perl, Python and PHP are also popular.

Just as C is the standard language, make is the standard program building tool,

given its source codes. A free programmer will normally use the GNU version

(GNU make) [36] rather than BSD's incompatible one (Adam de Boor, "PMake

- a tutorial") [100]. They can be used to specify dependency trees between fi-

les, and rules for generating dependent files from those that they depend on.

Thus, we can specify that an object file x.o depends on source files x.c and

x.h and that to build it we need to execute gcc -c x.c. Or that our program's

executable depends on a collection of objects and is mounted in a certain way.

When we modify source code and then execute make, only the affected mo-

dules will be recompiled and the final object will be mounted again. This is a

very low level tool, since, for example, it is incapable of finding out for itself

when a module needs to be recompiled in C, despite the fact that it could

do so by examining the chains of includes. It is also very powerful, because it

can combine all the file transformation tools available in order to build very

complex targets of a multi-language project. But is very complicated and very

dependent on Unix-type environments. Other supposedly better alternatives,

such as jam (Jam Product Information) [41], aap (Aap Project) [1] or ant (The

Apache Ant Project) [7] are rarely used (the latter is gaining popularity espe-

cially in the world of Java).

Given the heterogeneity of existing systems even in the world of Unix, we

also use tools designed to help make our programs portable. The GNU to-

ols autoconf (http://www.gnu.org/software/autoconf) [10], automake (http:/

/www.gnu.org/software/automake) [32] and libtool (http://www.gnu.org/

software/libtool) [35] makes these tasks easier in C and Unix environments.

http://www.gnu.org/software/autoconf
http://www.gnu.org/software/automake
http://www.gnu.org/software/automake
http://www.gnu.org/software/libtool
http://www.gnu.org/software/libtool

© FUOC • P07/M2101/02709 113 Free Software

Given the diversity of languages, character sets and cultural contexts, C pro-

grammers (and programmers using many other languages) often use gettext

(http://www.gnu.org/software/gettext) [31] and the internationalisation opti-

ons of the standard C library (http://www.gnu.org/software/libc) [34] for pro-

gramming applications that may be used easily in any cultural environment

and in the execution time.

Thus, when we receive a source package, it is most likely written in C, packaged

with tar, compressed with gzip, made portable with autoconf and associated

tools, and can be built and installed with make. Its installation will be carried

out in a very similar process to the following one:

 tar xzvf package-1.3.5.tar.gz cd package-1.3.5 ./configure make make install

8.3. Integrated development environments

An IDE (integrated development environment) is a system that makes software

developer's work easier, by solidly integrating the edition oriented at the lan-

guage, the compilation or interpretation, debugging, performance measures,

incorporation of source code to a source control system, etc., normally in a

modular fashion.

Not all free software developers like these tools, although their use has gradu-

ally expanded. In the world of free software, the first one to be extensively

used was GNU Emacs (http://www.gnu.org/software/emacs/) [33], star work

of Richard Stallman, written and extendable to Emacs Lisp, for which there

are mountains of contributions.

Eclipse (Eclipse - An Open Development Platform) [23] can be considered

today's reference IDE in the world of free software, with the disadvantage

that it works better (around May 2007) on a non-free virtual Java machine

(Sun's which is hoped to become free soon anyway). Other popular environ-

ments are Kdevelop (http://www.kdevelop.org) [42] for KDE, Anjuta (http://

www.anjuta.org) [6] for GNOME, Netbeans (http://www.netbeans.org) [51] of

Sun for Java and Code::Blocks (http://www.codeblocks.org) [18] for C++ ap-

plications.

8.4. Basic collaboration mechanisms

Free software is a phenomenon made possible by the collaboration of distribu-

ted communities and that, therefore, requires tools to make that collaboration

effective. Although for a long time magnetic tapes were physically posted, the

speedy development of free software began once it became possible to com-

municate rapidly with many people and to distribute program codes to them

or reply with comments and patches. For convenience, rather than sending

http://www.gnu.org/software/gettext
http://www.gnu.org/software/libc
http://www.gnu.org/software/emacs/
http://www.kdevelop.org/
http://www.anjuta.org/
http://www.anjuta.org/
http://www.netbeans.org/
http://www.codeblocks.org/

© FUOC • P07/M2101/02709 114 Free Software

code, messages could be used to send information on the site from which the

code could be collected. In fact, right in the beginning of the seventies, e-mail

was an extension of the ARPANET file transfer protocol.

In the world of Unix, in the mid-seventies, uucp, the Unix file transfer proto-

col, was developed for communicating machines through dial-up in addition

to dedicated machines, and on which electronic mail was mounted, and in

1979, the first USENET link over UUCP. USENET news, a hierarchically struc-

tured forum system distributed by flooding the sites subscribed to a hierarchy,

played a fundamental role in the development of free software, sending com-

plete programs in source to the hierarchy's groups comp.sources.

Simultaneously, mailing lists were developed, among which the BITNET

(1981) mailing list managers deserve mention. Nowadays the tendency is to

prefer mailing lists over USENET-type newsgroups. The main reason has been

the abuse for commercial purposes and intrusion of "absentminded" people,

interfering with noise in the discussions. Also, mailing lists provide more con-

trol and can reach more people. Recipients need to subscribe and any e-mail

address is valid, even if there is no direct Internet access. The mailing list ad-

ministrator can choose to know who subscribes or to unsubscribe someone.

The contributions can be restricted to members only or the programmer may

choose to moderate the articles before they appear6.

Traditionally, mailing list administration has been done by e-mail, using spe-

cial messages with a password, allowing the administrator not to have per-

manent Internet access, although this is becoming an increasingly rare phe-

nomenon, meaning that the most popular mailing lists manager nowadays

(Mailman, the GNU Mailing List Manager) [46] cannot be administrated by

e-mail, but rather necessarily via the web. The mailing lists play a crucial role

in the world of free software and in many cases7 they may be the only way

to contribute.

(6)There are also moderated news-
groups

Currently, with the web's popularity, many forums are pure web forums or

weblogs, with no other interface than the one provided by the navigator. They

can be generic, like the popular SlashDot (Slashdot: News for Nerds") [58]

(http://barrapunto.com) [11], where new free software is announced or any

related news or subjects specialising in a specific programme are discussed,

which are normally integrated in collaboration sites with various additional

and diverse tools (see section 8.6.2). There are also web interfaces to news-

groups and traditional lists.

Another collaboration mechanism that has become popular at the same time,

is based on wikis, especially when the idea is to build a joint document, such

as the specification for a program, a module or a system. We discuss this in

section 8.6.2.

(7)For example, contributions
to Linux have to be made as
text patches to the list linux-
kernel@vger.kernel.org.

http://barrapunto.com/

© FUOC • P07/M2101/02709 115 Free Software

Finally, we should mention the interaction mechanisms used by developers

to converse in real time. For free software it does not tend to be a practical

mechanism, because with all the developers distributed around the world it is

not easy to find a convenient time for everyone. Nonetheless, there are several

projects that use these text chat tools, either regularly or at virtual conferences

on set dates. The most commonly used tool is the IRC (Internet Relay Chat,

http://www.ietf.org/rfc/rfc2810.txt) [151], which normally communicates pe-

ople through themed "channels" established on the basis of a series of colla-

borating servers. It is not common for multimedia tools to be used (sound,

image.,) probably because quality connections are required which not everyo-

ne may have and that can entail problems with the free software available,

and the difficulty of registering and editing the results of conversations for

documenting purposes.

8.5. Source management

It is advisable for any program development project to archive its history, be-

cause a modification could produce a hidden error discovered later for exam-

ple, and the original needs to be recovered, at least in order to analyse the pro-

blem. If the project is developed by several people, the author of each change

will also need to be recorded, for the same reasons as explained above. If ver-

sioned releases of a project are made, we need to know exactly which versions

of each module form part of each release. Often, a project will keep one sta-

ble version and another experimental version; both need to be maintained,

debugged, and corrected errors transferred from one version to the other. This

can all be done by saving and labelling each and every version of the files

correctly, which has generally been considered an excessive cost, although

with current drives this is becoming less true. What a source control system ,

also known as a version management system normally does, is to save the file

history as a set of differences against a pattern, normally the most recent one,

for efficiency, also labelling each difference with the necessary metadata.

But we also want a system of these characteristics to serve for many program-

mers to collaborate effectively without stepping on each other's toes, but wit-

hout impeding each other's progress. Therefore, we need to be able to allow

several programmers to work concurrently, but with a certain level of control.

This control can be optimistic or pessimistic. With pessimistic control, a pro-

grammer can reserve some files to himself to improve for a time, during which

nobody else can touch those files. This is very safe, but will block other pro-

grammers and can delay the project, especially if the programmer that has

blocked the files is busy with other things or has even forgotten about them.

Allowing others to progress is more dynamic, but more dangerous, since in-

compatible modifications can occur. An optimistic system allows progress to

be made, but warns us when there have been conflicts and gives us tools to

resolve them.

http://www.ietf.org/rfc/rfc2810.txt

© FUOC • P07/M2101/02709 116 Free Software

8.5.1. CVS

CVS (Concurrent Version System) is an optimistic source management system

designed towards the end of the eighties and used by the vast majority of

free projects (Concurrent Version System [20], Open source code development

with CVS, 2nd edition) [113], "The Internet standards process", 3rd revision[95]).

It uses a central repository accessed through a client/server system. The site

administrator decides who has access to the repository, or to which parts of the

repository, although normally, once a developer has been admitted within the

circle of trust, he will have acess to all files. Anonymous access, in read-only

mode, may also be allowed for anyone.

The anonymous collaborator

The anonymous CVS is a vital tool for fulfilling the "release early and often"

concept advocated by Eric Raymond. Any user anxious to try the latest version

of a program can extract it from the CVS, discover bugs and communicate

them, even in the form of patches with the correction. And can examine the

full history of the development.

Let's look at a bit of the mechanics. An advanced user wishes to obtain the

latest version of the module mod from an anonymously accessible repository

in progs.org, directory /var/lib/cvs and protocol pserver. The first

time he will declare his intention to enter:

 cvs -d:pserver:anonymous@progs.org:/var/lib/cvs login

If a password is requested, it will be anonymous user (usually the carriage

return), which will be registered in a local file (this operation is not really

necessary for anonymous access, but the program will complain if the file with

the password does not exist). Next, the important thing is obtain the first copy

of the module:

 cvs -d:pserver:anonymous@progs.org:/var/lib/cvs co mod

This will create a directory mod with all of the module's files and directories

and some metadata (contents in subdirectories called CVS), which will allow,

among other things, not having to repeat the information already provided.

Our advanced user will enter the created directory, generate the package and

test:

 cd mod ./configure make make install ...

When he wishes to obtain a new version, he will simply update his copy wit-

hin mod.

© FUOC • P07/M2101/02709 117 Free Software

 cd mod cvs update ./configure make make install ...

If he finds a bug, he can correct it on site and then send a patch via e-mail to

the program's maintainer (individual or mailing list):

 cvs diff -ubB | mail -s "My patches" mod-maint@progs.org

The normal developer

The normal developer will have an account on the server. He can use the

same mechanism and the same protocol as the anonymous user, replacing

anonymous for his account name.

Once he has a working copy of the module, he can make the necessary chan-

ges, and when he considers that they have been stabilised, commit the changes

to the repository. For example, if he modifies the files part.h and part.c,

he will commit them like this:

 cvs ci part.h part.c

Before completing the operation, the CVS will ask him for an explanation of

what he has done, which will be attached to both files' log. Also the revision

number of each file will be increased by one unit. This number identifies every

important moment in the history of a file and can be used to recover each

one of those moments.

When should a developer do a commit? This is a question of methodology

that project members need to agree, but it seems obvious that changes that

are not compiled should not be committed. But it is preferable additionally

for them to pass a minimum battery of tests. In many projects the approval

of a project or sub-project supervisor who examines the modification is also

required.

In developing the modification, someone may have altered other files, or even

the same ones. Therefore it is advisable for developers to do a relatively fre-

quent update of their copy (cvs update). If other files have been modified, the

environment may also have changed and tests that were previously passed

may now be failed. If the same files have been modified, it could be that the-

se changes have occurred in places or routines that we have not touched or

in code that we have modified. In the first case there is no conflict (at least

not apparent) and the modification operation "merges" our version with the

repository's, generating combined files, with all of the changes. Otherwise the-

re is a conflict, in which case we need to discuss with the developer who has

made the other changes and agree to a final version.

Note

For security reasons, for ac-
counts with write permissions,
ssh tends to be used, as it
provides an authenticated and
ciphered channel.

© FUOC • P07/M2101/02709 118 Free Software

For better identification of each project component, it is advisable for it to

carry directly associated revision information. CVS can mark source codes

and objects automatically, on condition of following a certain discipline. For

example, if in a source code comment we write the key word Id, every ti-

me the file is committed to the repository, the word will be replaced with an

identification chain that will show the file name, the revision number, 8the

date and time of the commit and its author:

 $Id: part.c,v 1.7 2003/07/11 08:20:47 joaquin Exp $

If we include this key word in a change of characters of the program, when

compiled the chain will appear in the object and in the executable, making it

possible to identify it with a tool (ident).

The administrator

Obviously, administrators are responsible for the most complicated part of

maintaining the repository. For example, they need to register the program,

issue permissions for developers and coordinate them, label delivered versi-

ons, etc.

It is common practice for all projects to have a stable version and an experi-

mental version. To do this we create branches. Whereas those dedicated to

maintenance correct errors on the stable branch, new developments are made

on the experimental branch. When the experimental branch stabilises, it is

passed onto stable, but not without previously applying the corrections made

to the former stable branch. This operation is called merging, it is delicate and

supported by CVS, although in a somewhat primitive way. This idea can be

extended to the concept of experimental branches which evolve in different

directions, which may or may not come to a good end, and that in any case,

unless they are dead ends, will have to be fully or partly integrated into the

stable product, with appropriate merges.

A right that free software gives us is to modify a program for private use. Alt-

hough it is desirable to contribute all improvements to the common pool,

often the modifications we wish to make are too specific and uninteresting

for the public at large. But we are interested in incorporating the evolution in

the original program. This can be done with a special type of branching and

merging (seller branches).

The administrator can also facilitate team coordination through automated

mechanisms, such as by generating e-mail messages when certain events oc-

cur, like commits, or forcing certain automatic actions to be carried out before

a commit, such as automatic checks of style, compilations, or tests.

(8)In CVS the revision numbers nor-
mally have two components (ma-
jor and minor), but they can have
four, six, etc.

© FUOC • P07/M2101/02709 119 Free Software

8.5.2. Other source management systems

Despite being the most extensively used version control system, CVS has some

notable disadvantages:

1) CVS does not support either renamings or file directory changes, or meta-

data (proprietary, permissions, etc.) or symbolic links.

2) Because it is an evolution of a version control system for individual files,

it naturally does not support version control for complete groups.

3) CVS does not support sets of coherent changes. Indeed, adding a feature

or correcting an error can involve changing several files. These changes

should be atomic.

4) In CVS the use of branches and merges is fairly complicated. In fact, if

we create an experimental branch of a project and wish to include the

corrections made to the stable version, we need to know in detail which

corrections have been made already and which not, so as not to do them

several times over.

5) CVS depends on a centralised server, and although it is possible to work

without a connection, we do need one for generating versions, comparing

and merging them.

6) CVS does not generate, without the help of separate tools, the file chan-

gelog, which shows the global history of a project's changes.

7) CVS does not support well projects with a very large number of files, as

in the case of the Linux kernel.

And yet, there are other free systems which solve several of these problems. We

would highlight the already mentioned successor of CVS, Subversion (http://

subversion.tigris.org) [62], (http://svnbook.red-bean.com/) [96], which strictly

solves the basic problems of CVS and can use HTTP extensions (WebDAV) in

order to get round aggressive security policies.

The development model based on a centralised repository, although suitable

for cooperative work, does not satisfy all expectations, since being able to cre-

ate our own development branches depends on the one hand on the server's

accessibility and good functioning and on the other on the administrators of

that server. Sometimes distributed repositories are required that allow anyone

to have a repository with a private or public branch that can then be merged

or not with the official one. This is how GNU arch (Arch Revision Control

System) [8] or bazaar (Bazaar GPL Distributed Version Control Software) [12]

function, as well as the proprietary system BitKeeper (Bitkeeper Source Ma-

nagement) [14], chosen by Linus Torvalds to maintain Linux since February

Note

In 2007 Subversion is alre-
ady the clear successor of CVS,
and many free software deve-
lopments have migrated to it.

http://subversion.tigris.org/
http://subversion.tigris.org/
http://svnbook.red-bean.com/

© FUOC • P07/M2101/02709 120 Free Software

2002, since according to him there was no appropriate free tool. It is said that

using Bitkeeper doubled the pace of development of Linux. Nonetheless, the

decision came under heavy criticism because it was proprietary, with a licen-

ce that allowed free projects to obtain it free of charge on condition that all

commit changes with their metadata were logged on a public server designa-

ted by the owners and accessible to everyone, and always on condition that

the licensee did not try to develop another source control system to compete

with it. It was precisely the attempt to develop a compatible free product by

an employee of the same company where Linus Torvalds worked that deto-

nated the change in source management system. Linus rapidly developed a

provisional replacement, git ("Git manual page") [218], which soon became

definitive, condensing all of the experience of Linux's cooperative and decen-

tralised development: it supports large-size projects in a decentralised fashion,

facilitating to a great extent the development of tentative branches and their

merging with others or with the main one, with cryptographic security mec-

hanisms that prevent altering the log. As of April 2005, Linux is maintained

using git or its wraps (for example, cogito "Cogito manual page" [90].

8.6. Documentation

In the world of free software, WYSIWYG text processors and other office suite

tools that are so successful in other environments are barely used, even though

there are already free tools such as OpenOffice.org. This is due to several im-

portant factors:

• It is advisable to maintain documentation under source control, and sour-

ce control systems, like CVS, although they admit binary formats, prefer

transparent text formats that can be edited with a normal text editor and

processed with tools developed for programs that allow us to see the dif-

ferences between versions easily, to generate and apply patches based on

those differences, and to carry out merges.

• Some free documentation licences, especially the GFDL (vid. section

10.2.1), demand transparent formats, especially because they make the job

easier for those who prepare derived documents.

• The WYSIWYG tools ("what you see is what you get") generally do not con-

tain any information other than the strict visualisation, making it very dif-

ficult, if not impossible, to identify authors, or titles, or conversion to ot-

her formats. Even if they do allow conversion to other formats, this tends

to be done interactively, and is often impossible to automate (using make,

for example).

• In general, office applications generate sizeable file formats, which is an

undesirable feature for both developers and repositories.

Note

In Unix the most common to-
ols for these operations are
diff, diff3, patch and merge.

© FUOC • P07/M2101/02709 121 Free Software

For all of the above, free programmers, accustomed to programming and com-

piling, prefer transparent document formats, in many cases pure simple text

and in many others processable document formats.

The processable formats in use are not many. Traditionally, in the world of

Unix programs have been documented in the formats expected by the family

of processors roff, with free version (GNU troff) [37] by Norman Walsh. Ne-

vertheless, this practice has been gradually abandoned, except for traditional

manual pages, since it is almost obligatory to prepare manual pages for the

system's most basic tools. Because many manual pages have grown so much

so that it is barely appropriate to call them pages, it was necessary to prepa-

re an alternative hypertext format that allowed documents structured with

indexes and cross-references to be followed. The GNU project designed the

texinfo format (Texinfo - The GNU Documentation System) [63] and made it

its standard. This format allows navigable documents to be obtained with the

info tool or within the emacs editor, and in turn, to obtain quality document

printouts using the TeX text processor, of Donald Knuth (The TeXbook) [156].

The texinfo format can be translated into multipage HTML if required, and

many people prefer to view the information with a web navigator, but the

capacity to search for words in a document is lost. This is one of the unwanted

results of the popularity of HTML, since the navigators do not implement the

concept of multipage document , despite the fact that there are link elements

that allow parts to be interlinked.

There is overwhelming demand for being able to view complex documents as

easily navigable multipage web pages. There are people who write documen-

tation in LaTeX (LaTeX user's guide and reference manual) [163], also a TeX ap-

plication, very popular among scientists, more expressive than Texinfo and

convertible to multipage HTML with certain tools (The LaTeX Web Compani-

on) [130], on condition a certain discipline is maintained. Inded, TeX appli-

cations are sets of macros that combine very low level typographic operators

to convert them into abstract languages that work with high level concepts

(author, title, summary, chapter, section, etc.). If we only use the basic macros,

conversion is simple. But since nobody prevents the use of low level operators

and, additionally, there are enormous quantities of macros packages beyond

the maintenance capacity of conversion tool maintainers it is difficult to ac-

hieve good conversions.

8.6.1. DocBook

The problem stems from the fact that there is no distinction between content

and presentation, either rin the TeX or in the nroff applications, since the abs-

traction is built in layers. This distinction is made by SGML applications (stan-

dard generalized markup language) [81] and XML (extensible markup language)

[224], where the presentation is specified with completely separate style she-

© FUOC • P07/M2101/02709 122 Free Software

ets. Soon very simple SGML applications started to be used, such as linuxdoc

and debiandoc, but due to their limited expressive capacity, DocBook was

chosen. (DocBook: the definitive guide) [225].

DocBook is an SGML application originally developed for technical IT docu-

mentation and now has an XML variant. Currently, DocBook is the standard

free documentation format for many projects (Linux Documentation Project,

KDE, GNOME, Mandriva Linux, etc.) and an objective to be reached for others

(Linux, *BSD, Debian, etc).

However, DocBook is a complicated language, plagued by the tags, which me-

ans that it is useful to have tools to help with the editing, even if they are very

basic and rare; one of the most popular tools of this type is the psgml mode

of emacs. It is also heavy to process and free processors still generate a not very

attractive quality of documents.

8.6.2. Wikis

Many people find it too complicated to write documentation with such com-

plex languages as DocBook and collaboration mechanisms like CVS. This is

why a new mechanism of collaboration for online document preparation via

the web has become popular, called wiki, and invented by Ward Cunningham

("Wiki design principles") [97]. It was first put into service in 1995 and is now

extensively used in a wide range of variants for preparing very dynamic docu-

ments, not designed for printing and often with a short shelf life (for example,

conference organisation).

Unlike DocBook, a wiki has a very simple and concise mark language which is

reminiscent of the final presentation, without being exactly like it. For exam-

ple, paragraphs are separated by a blank line, elements of a list are started with

a hyphen if not numbered and with a zero if they are numbered, and table

cells are separated by vertical and horizontal bars.

Neither does the concept of a "full document" exist, rather a wiki is more a set

of small interlinked documents created as and when it is necessary to explain

a new concept or theme. The documents are created almost automatically, as

the editing tool shows very clearly that we have entered a concept (through

a NameWiki, almost always two joined words with the first letter capitalised).

Hardly any wikis allow hyperlinks within the same page.

Unlike CVS, anyone can write in a wiki, although it is advisable for the author

to identify himself by previously registering. When we visit a wiki we can see

that all pages have a button that allows them to be edited. If pressed, the

navigator will show us a form with the document's source code, which we will

© FUOC • P07/M2101/02709 123 Free Software

be able to change. This is not a WYSIWYG edit, which discourages anyone

just wanting to interfere, but is simple enough for anybody interested to be

able to modify documents with very little effort.

Wikis carry their own document version control, in such a way that all of their

versions are generally accessible, indicating who made them and when. They

can also be easily compared. Plus, they tend to include search mechanisms, at

least per page name and word content.

Normally, the original author of a page will want to know what changes are

made to it. To do so he can subscribe to the changes and receive notifications

of them by e-mail. Sometimes, the person seeing a document will not dare to

change anything, but may make a comment. Normally , all wiki pages have

an associated comments forum pasted at the end of the document, which

either the original author or anybody who assumes the role of editor can use

to reform the original text, possibly by moving phrases from the comments

to the relevant places.

Advice

The best way of understanding the wiki concept is to access one and experiment on a
page designed for this purpose, usually called SandBox.

8.7. Bug management and other issues

One of the strong points of the free development model is that the commu-

nity contributes with bug reports and feels that those reports or solutions are

given attention. This requires a simple bug reporting mechanism, so that de-

velopers can receive sufficient information, in a systematic way and contai-

ning all necessary details, either provided by the collaborator, with an expla-

nation of what is happening, the level of importance and possible solution, or

through an automatic mechanism that determines, for example, the program

version and environment in which it functions. Errors should also be saved

in a database that can be consulted, to see whether a bug has already been

communicated, corrected, its level of importance, etc.

There are several of these systems, with different philosophies. Some are via

web, others via e-mail, through some intermediary program. They all have a

web interface for consultation. Some allow anonymous reports, while others

require identification (a valid e-mail address) to prevent noise. Although web

procedures would appear to be the most simple, they do not easily obtain au-

tomatic information on the bug's environment. For example, the Debian sys-

tem provides programs like reportbug, which after asking for the name of the

package that we wish to report on, consults the error server for the bugs it has

reported to it. If none of them refers to our problem, we will be asked for a des-

cription of it, its level of importance ("critical", "grave", "serious", "important",

"cannot be regenerated from source codes", "normal", "minor" or "suggestion")

and labels about its category (for example, "security"). Following this, if we

© FUOC • P07/M2101/02709 124 Free Software

confirm the request, it will automatically find out the version of the package

and those on which it depends, in addition to the kernel's version and archi-

tecture. Obviously, it knows the e-mail address, so it sends to the correct site

a similar report to the following:

 Package: w3m-ssl Version: 0.2.1-4 Severity: important After reloading a page containing complex tables several dozen times, w3m had used all physical memory and thrashing commenced. This is an Alpha machine. --System Information Debian Release: testing/unstable Kernel Version: Linux romana 2.2.19 #1 Fri Jun 1 18:20:08 PDT 2001 alpha Unknown Versions of the packages w3m-ssl depends on: ii libc6.1 2.2.3-7 GNU C Library: Shared libraries and Timezone data ii libgc5 5.0.alpha4-8 Conservative garbage collector for C ii libgpmg1 1.19.3-6 General Purpose Mouse Library [libc6] ii libncurses5 5.2.20010318-3 Shared libraries for terminal handling ii libssl0.9.6 0.9.6a-3 SSL shared libraries ii w3m 0.2.1-2 WWW browsable pager with tables/frames support

This message generates a bug number which is returned to us, sent to the

maintainer and saved in the database. When the bug is solved, we will also

receive a notification. Every bug has an e-mail address assigned to it that can

be used to provide additional information, for example. We can consult the

bug database http://bugs.debian.org at any time.

Sometimes bug monitoring systems have mechanisms for assigning someo-

ne to solve them and setting a deadline. There are also other issues, such as

pending jobs, requested improvements, translations, etc., that require similar

management mechanisms. With free software we cannot generally use very

rigid mechanisms for managing the tasks that each developer has to do. After

all, many collaborators are volunteers and cannot be obliged to do anything.

Nonetheless, tasks can be defined and we can wait for somebody to subscribe

to the system and to take them on within a declared period. Whether there is

control over what certain people can do or not, it is always advisable to con-

trol all the tasks that need to be done, who and what they depend on, their

level of importance, and who is working on them. Many important projects

manage these aspects using Bugzilla (The Bugzilla guide) [89] or its derivatives.

Sometimes someone working on a project may discover a bug on a different

project on which his work depends, but that has a different bug management

system to the one to which he is accustomed. This is particularly true for users

of distributions who wish to use a single tool for reporting and monitoring

bug solving. To facilitate reporting and monitoring of those bugs, it may be

advisable to federate different systems, as done by Malone (The Malone Bug

Tracker) [47].

8.8. Support for other architectures

The minimum support required for working with a portable program is access

to compilation farms , which allow the program to be compiled on different arc-

hitectures and operating systems. For example, SourceForge (vid. section 8.9.1)

offered for a time Debian GNU/Linux environments for Intel x86, DEC Alpha,

PowerPC and SPARC, in addition to Solaris and Mac OS/X environments.

It is also useful to be able to test (not just compile) the program in tho-

se environments. But this service requires more resources and more of the

administrator's time. The compilation service can already be problematic, be-

cause normally we need to provide compilation environments for several lan-

guages, with a large number of libraries. If what we want to do is to test any

http://bugs.debian.org/

© FUOC • P07/M2101/02709 125 Free Software

program, the difficulties increase exponentially, not just because it is very

difficult to have the necessary resources available, but also for security rea-

sons, which can make it extremely complicated to administrate those systems.

Notwithstanding, there are a few compilation farm services, with standard ins-

tallations of various architectures, which can allow us to test some things.

The abovementioned public farms are normally a service that requires manual

use. The invited developer copies his files onto one of those machines, compi-

les them and tests the result. He will probably have to do it from time to time,

prior to releasing an important version of the program. It could be much more

interesting for compilations and the execution of regression tests to be carried

out systematically, in an automated fashion, for example every night, if the-

re have been changes in the source codes. This is how some important pro-

jects operate, which provide their own infrastructure for external developers,

which tends to be called a tinderbox. This is the case with Mozilla, financed by

Netscape, whose tinderbox (http://www.mozilla.org/tinderbox.html) [50] has

a web interface to the results of the compilation and tests of the navigator's

components on all of the architectures on which it operates. This interface is

closely related to the CVS and shows those results for different states (between

commits), identifying the one responsible for the bugs, and facilitating pro-

gress, by overcoming the problem until it is resolved. Tinderboxes are also

used by the projects OpenOffice and FreeBSD, at least.

8.9. Development support sites

Development support sites offer in a more or less integrated fashion, all of the

services described above plus a few additional ones that allow projects to be

searched by categories and to classify them according to some simple parame-

ters of activity. This spares the developer having to mount and administrate

an entire infrastructure for collaboration allowing him to concentrate on the

project.

8.9.1. SourceForge

With regards to this type of service, one of the first to become established, and

the most popular, was SourceForge (http://sourceforge.net) [61], managed by

the OSDN (Open Software Development Network), a subsidiary of VA Softwa-

re, which in March 2007 hosted more than 144,000 projects. It is structured

around a set of programs with the same name, and which up to version 2 were

free software.

SourceForge, as a prototype for this type of sites, offers a web interface or glo-

bal access portal (http://sourceforge.net/) and a subportal per project (http://

proyecto.sourceforge.net). The global interface shows news, advertisements,

links, and an invitation to become a member or to enter if we already are

members. To collaborate on the site, it is advisable to become a member, and

it is compulsory if we want to create a new project or to participate in an exis-

http://www.mozilla.org/tinderbox.html
http://sourceforge.net/
http://sourceforge.net/
http://proyecto.sourceforge.net/
http://proyecto.sourceforge.net/

© FUOC • P07/M2101/02709 126 Free Software

ting one. To be a spectator it is not necessary, and as such, we can see what

are the projects experiencing most active development or downloaded most

frequently, and search for projects by category or descriptive word, and they

will appear in order of activity level. For each project we can see its descrip-

tion, status (alpha, beta, production), its describers (programming language,

operating system, theme, type of users, language, licence...), bugs and pending

or reinstated aspects, activity levels over time..., or download it. We can also

take part in forums or report on bugs, even anonymously, which is not very

advisable (because, for example, we may not get a reply).

Any authenticated user can request to register a project, which the adminis-

trators will admit on condition that it fulfils the site's policies, which in the

case of SourceForge are fairly liberal. Once authorised, the creator can register

other users as additional administrators or as developers, with access to mo-

dify the sources. Following authentication, there are not many more controls

over the project, which means that there are a lot of dead projects. This does

not confuse users too much though, because project searches order the pro-

jects by level of activity, meaning that low or nil activity projects are barely

visible. These projects run the risk of being eliminated by the site owners. The

services that SourceForge offers a project, and that we could expect from any

other similar service are as follows:

• Hosting for the portal web pages of the project, at the address

project.sourceforge.net, for viewing by the public. These pages can be sta-

tic or dynamic (with CGI or PHP), in which case they can use a database

(MySQL). They are entered directly through remote copy orders and can

be handled using remote terminal interactive sessions (SSH).

• Optionally, a virtual server that responds to addresses from a separately

obtained domain, like www.project.org or cvs.project.org.

• As many web forums and/or mailing lists as may be necessary in the

administrator's opinion.

• A news service where administrators announce advances concerning the

project.

• Trackers for bug reporting and monitoring, requests for support, requests

for improvements or integration of patches. Administrators give the issue

a priority level and assign a developer to find the solution.

• Task managers, similar to trackers, that allow sub-projects to be defined

with a series of tasks. These tasks, in addition to a priority level, are given

a deadline. From time to time, developers assigned these tasks can show

percentages of task completion.

© FUOC • P07/M2101/02709 127 Free Software

• A CVS or Subversion with initial access rights for all developers.

• Uploading and downloading service for software packages. It registers en-

tered versions when used and interested parties can receive a notification

when this occurs. Plus, the initial upload involves the creation of several

replicas worldwide, which facilitates distribution.

• Service for publishing documents in HTML format. Anyone can register

them, but they will only be visible following approval by an administrator.

• Back-up copy for disaster recovery, such as broken drive, not user bugs,

like accidentally deleting a file.

• Integrated mechanism for donations to users, to projects and to Source-

Forge.

An authenticated user will have a personal page containing all relevant infor-

mation, such as projects to which the user is associated, themes or tasks pen-

ding, as well as forums and files that he has said he wants to supervise. Plus, so

that he does not have to be tending to his personal page, the user will receive

notifications to his e-mail about the things he wishes to control.

8.9.2. SourceForge heirs

In 2001, VA Software was about to go bankrupt, in the full swing of the dot-

com crisis. Then it announced a new version of its SourceForge software with

a non-free licence, in an attempt to secure a source of revenue by selling it

to companies for their internal developments. At the same time, it elimina-

ted mechanisms that allowed a project to be dumped for moving to another

site. Both events were seen as a threat that the thousands of projects hos-

ted by SourceForge would become trapped in the hands of a single company,

which would use the platform for showing non-free software. In the face of

this and the possibility of the site closing, offspring of the free version were

developed and portals based on it were opened, particularly Savannah (http:/

/savannah.gnu.org) [57], dedicated to the GNU project and to other programs

with copyleft-type licences, or BerliOS (BerliOS: The Open Source Mediator)

[13], conceived as a meeting point for free software developers and compani-

es. However, this is just a step in the direction of developing a distributed and

replicated platform, where nobody has absolute control over the projects (Sa-

vannah The Next Generation, 2001) [98].

Another example of a free software project management system is Launchpad

(https://launchpad.net) [43], used by Ubuntu for developing each version of

the distribution. Launchpad is not a repository for source code, it is designed

http://savannah.gnu.org/
http://savannah.gnu.org/
https://launchpad.net

© FUOC • P07/M2101/02709 128 Free Software

rather to offer support for monitoring code, incidents and translations. To

achieve this it uses the already mentioned Malone tool, which allows incidents

to be redirected to each code repository of the affected modules.

8.9.3. Other sites and programs

Naturally, collaboration systems have been and continue to be developed, and

some companies base their business on maintaining and servicing those si-

tes. For example, the Tigris project (Tigris.org: Open Source Software Engine-

ering Tools) [64], which not only maintains free software engineering pro-

jects, it also uses a collaboration portal (SourceCast) maintained by a servi-

ce company (CollabNet), which also maintains individual projects' sites, like

OpenOffice.org. Emerging new sites adopt new free software, such as GForce

(http://gforge.org) [30], used by the Debian project (http://alioth.debian.org)

[5]. We can see a detailed comparison of many sites in "Comparison of free/

open source hosting (FOSPhost) sites available for hosting projects externally

from project owners" [202].

http://gforge.org/
http://alioth.debian.org/

© FUOC • P07/M2101/02709 129 Free Software

9. Case studies

"GNU, which stands for 'Gnu's Not Unix', is the name for the complete Unix-compatible
software system which I am writing so that I can give it away free to everyone who can
use it. Several other volunteers are helping me. Contributions of time, money, programs
and equipment are greatly needed."

Richard Stallman, "The GNU Manifesto" (1985)

This chapter provides a more in-depth study of some of the most interesting

free software projects in terms of the impact on the free software world, the re-

sults obtained, the management models, historical development, etc. Of cour-

se, the number of projects that we can discuss here is much smaller than the

total number of free software projects that there are (dozens of thousands),

which means that this chapter should not be thought of as comprehensive,

and neither can it ever be. Nevertheless, we hope that readers, having read the

chapter, will at least have a basic understanding of how the theories that we

have discussed throughout this book have been put into practice.

The projects that we have chosen range from lower-level applications, the

ones which interact more with the computer's physical system rather than the

user, to work environments designed for the end user. We have also included

free software projects that, in principle, are not strictly development projects.

This mainly applies to the distributions, which tend to be used as integrating

systems, as they mainly take an extensive but limited set of independent ap-

plications and use them to create a system in which everything interacts ef-

fectively, including the options for installing, updating and deleting new ap-

plications, as desired by the user.

The lowest-level projects that we will look at will be Linux, the kernel of

today's most popular free Operating System and FreeBSD, which combines the

kernel from the BSD family with a series of applications and utilities made by

third projects, which is the purest method for distributions. The work envi-

ronments for end users that we will study will be KDE and GNOME, which

are certainly the most widely-used and popular. For the servers, one of the

main aspects in free systems, we will look at Apache, the leader in the WWW

servers market, in this chapter. Likewise, we will introduce Mozilla, one of

the WWW clients (it is in fact, much more than that) that we can rely on in

the free software world. The last project that we will look at in this chapter is

OpenOffice.org, a free Office IT (suite) package.

© FUOC • P07/M2101/02709 130 Free Software

To finish off, we thought it would be appropriate to study the details of two of

the most popular distributions, Red Hat Linux and Debian GNU/Linux, and to

compare their sizes to other widely used systems, such as Microsoft Windows

or Solaris.

After discussing the different case studies, we will provide a table showing the

most important characteristics of each application or project. One of the ele-

ments that readers will probably find most surprising will be the results of the

cost and duration estimates and the number of developers required. We have

obtained these results using methods typically used in the field of software

engineering, especially the COCOMO Software Cost Estimation Model. The

COCOMO model (Software Engineering Economics, 1981) [93] takes the number

of source code lines as the starting measurement and generates estimates of

the total cost, the development time and effort required to create the softwa-

re. COCOMO is a model designed for "classical" software generation processes

(waterfall or V model developments) and for average-size or large-scale pro-

jects; therefore, the figures that it will produce for some of the cases we analyse

should be taken with some reservations. In any event, the results can help to

give us an idea of the sheer scale on which we are working and of the amount

of strenuous effort that would be necessary to achieve the same results with

a proprietary software development model.

In general, it is the cost estimates that are most striking out of all the figures

resulting from the COCOMO model. Two factors are taken into account in

this estimate: a developer's average salary and the overheads. For calculating

the estimated costs, the average salary for a full-time systems programmer is

taken from the year 2000 "Salary survey 2000" [235]. The overheads are the

extra costs that all companies must pay so that the product can be released,

independently of the salary paid to the programmers. This ranges from the

salaries of the secretaries and the marketing team to the costs of the photoco-

pies, lighting, hardware equipment, etc. To summarise, the cost calculated by

COCOMO is the total cost that a company would have to incur in order to

create software of the specified dimensions and it should be remembered that

only a part of this money would be received by the programmers for designing

the software. Once this is factored in, the costs no longer seem so excessive.

9.1. Linux

The Linux kernel is, without a doubt, the star application of free software, to

the extent that, whilst only constituting a small part of the system, its name is

used to define the whole. Furthermore, it could even be said that free software

itself is confused with Linux on many occasions, which is a pretty big mistake

to make, given that there is free software that runs on systems not based on

Linux (in fact, one of the biggest aims of the movement and of many free

software projects is to create applications that can run in numerous environ-

© FUOC • P07/M2101/02709 131 Free Software

ments). On another note, there are also applications that work in Linux and

that are not actually free software (Acrobat Reader, the PDF documents reader,

for which there is also a Linux version).

Note

There are actually various projects that integrate and distribute free applications that run
on Windows systems around, to avoid free software becoming associated solely with Li-
nux systems. One of the pioneers in this area (and the one that probably became most
well-known and comprehensive) was GNUWin, which was distributed on self-bootable
CDs with more than a hundred free applications for Win32 systems. Most of these appli-
cations are also available in common GNU/Linux distributions, which made GNUWin
a good tool for preparing for a gradual and easy transition from a Windows system to
a GNU/Linux one. As at early 2007, there are other similar systems available, such as
WinLibre.

9.1.1. A history of Linux

The history of Linux is one of the most well-known histories within the world

of free software, most probably because it has the traits of a legend rather than

those of the history of a computer programme. In 1991, a Finish student called

Linux Torvalds decided that he wanted to learn how to use protected mode

386 on a machine that his limited income had allowed him to purchase. At

that time, there was a kernel in the operating system called Minix, designed for

academic purposes and for use in university courses on operating systems; this

is still used today. Andrew Tanenbaum, one of the most prestigious professors

at the university, was the leader of the team working on the development of

Minix, based on traditional Unix systems. Minix was a limited system, but

quite capable and well-designed, and was at the centre of a large academic and

engineering community.

Minix had a free distribution license and could be used easily for academic

purposes, but it had the big disadvantage that people that did not work or

study in the University of Amsterdam could not add improvements to it; ins-

tead these improvements had to be made independently, usually using patc-

hes. This meant that in practice, there was an official version of Minix that

everybody used and then a long series of patches that had to be applied later

to obtain additional functions.

In mid-1991, Linus, the still-anonymous Finnish student, sent a message to

the Minix newsgroup announcing that he was going to start work on an ope-

rating system kernel based on Minix, from zero, but without including the sa-

me code. At the time, although Linus did not explicitly say that he was going

to publish it with a free license, he noted that the system that he was going

to create would not have the barriers that Minix had; this would indicate that,

unbeknown to him, and probably without actually wanting to, he was taking

the first step towards making the community that congregated around Minix

at that time his.

© FUOC • P07/M2101/02709 132 Free Software

Version 0.02, which dates from October 1991, despite being very limited,

could already execute bash terminals and the GCC compiler. Over the course

of the following months, the number of external contributions grew to the

point that in March 1992, Linus could publish version 0.95, which was widely

acknowledged as almost stable. There was still quite a way to go, however, be-

fore version 1.0, which is usually considered the first stable one: in December

1993, for example, version 0.99pl14 was published (which would make it the

fourteenth corrected version of version 0.99); in March 1994, Linux 1.0 was

finally born. By this time, Linux was being published under the terms of the

GPL license; according to Torvalds himself, this was one of the best decisions

he ever made, as it was extremely helpful in distributing and popularising his

kernel. In "Evolution in open source software: a case study", [128] there is an

exhaustive analysis of the evolution of the different versions of the Linux ker-

nel, focusing on the scale and modularity.

Note

Another significant event in the annals of free software was the debate that took place
in late January 1992 on the Minix newsgroup between Andrew Tanenbaum and Linus
Torvalds. Tanenbaum, who was probably a bit annoyed by Torvalds' success with his
"toy", attacked Linux and Linus in a rather disproportionate manner. His essential point
was that Linux was a monolithic system (the kernel integrates all the handlers and the
rest) and not a microkernel system (the kernel has a modular design, which means that
it can be much smaller and that modules can be loaded upon demand). The original
argument can be read just as it occurred in "The Tanenbaum-Torvalds debate" newsgroup
[214].

9.1.2. Linux's way of working

The way Torvalds worked was not very common at that time. The develop-

ment was mainly based on a mailing list9. The mailing list was a place where

people not only argued, but where developments also took place. And this

was because Torvalds was extremely keen on having the whole life of the pro-

ject reflected on the mailing list, which is why would ask people to send their

patches to the list. Contrary to what one might have expected (the patches

sent as attachments), Linus preferred to have the code sent in the body of

the message so that he and others could comment on the code. In any case,

although many people would provide their opinions and send corrections or

new functions, the last word would always go to Linus Torvalds, who would

decide on what code would be incorporated into Linux. To a large extent, this

is still how it works in 2007.

Note

The consolidation of Linus Torvalds as a "benevolent dictator" has given rise to a large
number of anecdotes within the project. For example, it is said that if an idea is liked,
it must be implemented. If it is not liked, it must also be implemented. The corollary,
therefore, is that good ideas are no use whatsoever (without code, of course). On anot-
her note, if the implementation is not well-liked, it is essential to insist. A well-known
case is that of Gooch, for whom Saint Job was a mere learner. Gooch made up to one
hundred and forty six parallel patches until Linus finally decided to integrate them into
the kernel's official branch.

(9)The list's email is linux-
kernel@vger.kernel.org. The his-
torical messages can be seen at
http://www.uwsg.indiana.edu/hy-
permail/linux/kernel/.

mailto:linux-kernel@vger.kernel.org
mailto:linux-kernel@vger.kernel.org
http://www.uwsg.indiana.edu/hypermail/linux/kernel/
http://www.uwsg.indiana.edu/hypermail/linux/kernel/

© FUOC • P07/M2101/02709 133 Free Software

Another one of Torvalds' innovative ideas was to develop two branches of

the kernel in parallel: the stable one (the second number of the version is

usually even, such as 2.4.18) and the unstable one (the second number of the

version is odd, such as 2.5.12) As ever, Torvalds is the person that decides what

goes into which branch (many of the most controversial decisions are related

precisely to this point). In any case, Linux doesn't have any planned deliveries,

in fixed timeframes: it will be ready when it is ready and in the meantime

we'll just have to wait. Surely by now, most readers will have realised that the

decision on whether the system is ready or not will be made solely by Linus.

The development method used in Linux has proven to be very effective in

terms of results: Linux is very stable and any bugs are corrected extremely

quickly (sometimes in minutes), as it has thousands of developers. In this si-

tuation, when there is a bug, the probability that someone will find it is very

high, and if the person that discovers it is not able to correct it, someone will

appear who will hit on the solution very quickly. To summarise, this shows

how Linux has thousands of people working on its development every month,

which is why its success is not altogether surprising.

It should be noted, however, that this way of working is very expensive where

resources are concerned. It is not unusual for there to be many mutually-ex-

clusive proposals for a new function or that a dozen patches are received for

the same bug. In most cases, only one of the patches will finally be included

in the kernel, which means that the rest of the time and effort put into the

patches by the other developers will have all been in vain. Linux's develop-

ment model is, therefore, a model that works very well in Linux but which

not all projects can permit themselves.

9.1.3. Linux's current status

In early 2007, Linux was at version 2.6, which included, in terms of impro-

vements made to version 2.4, NUMA (Non-Uniform Memory Access, used a

lot in multiprocessors), new filesystems, improvements to communication in

wireless networks and sound architectures (ALSA) and many other improve-

ments (if you're interested in the details of the changes in respect of previous

versions, you may consult "The wonderful world of Linux 2.6" [186]).

Linux's development model has undergone some changes over recent years.

Although the development mailing list is still the soul of the project, the code

no longer has to pass through the list, necessarily. One of the things that have

contributed to this in a large way is BitKeeper, a proprietary system that per-

forms revision control, developed by the company BitMover, strictly following

Linus Torvalds' recommendations. The use of this proprietary tool generated a

lot of controversy, in which Linus, true to form, demonstrated his pragmatism

again, as for him and many others, the CVS version control system was very

antiquated. The disagreements were brought to an end with the development

of git, a revision control system with similar features to BitKeeper that is cur-

© FUOC • P07/M2101/02709 134 Free Software

rently used in Linux's development. More specifically, Linux's development

process follows a pyramidal hierarchy, in which the developers propose patc-

hes, shared via mail between levels, which have to be accepted by the next le-

vel up, formed by controller and file maintainers. The subsystem maintainers

are on a higher level, whereas Linus Torvalds and Andrew Morton are on the

top level and have the final say where the acceptance of patches is concerned.

To summarise, the following table provides an x-ray of the Linux project,

showing how it now has more than five million lines of code and that it can

therefore be included amongst the largest free software projects (along with

Mozilla and OpenOffice.org). As to the estimates regarding the time it would

take to design such a project and the average number of developers that would

be necessary, we should note that the former is certainly much less than the

time that Linux has been around. On the other hand, this is more than com-

pensated by the latter detail, given that the average number of developers

working full-time that would be necessary for such a project is higher than

the number ever available to Linux.

Note

The cost estimate that COCOMO offers us is in the range of 215 Million US Dollars, a
sum that, if we put it in the context of everyday figures that we might think about, would
be double what the best football clubs might pay for a great football star.

Table 4. Analysis of Linux

Website http://www.kernel.org

Beginning of the project First message on news.comp.os.minix: Au-
gust 1991

License GNU GPL

Analysed version 2.6.20 (stable version from 20/02/2007)

Source code lines. 5,195,239

Cost estimate (according to basic COCO-
MO)

$ 215,291,772

Design time estimates (according to basic
COCOMO)

8.83 years (105.91 months)

Estimate of average number of developers
(according to basic COCOMO)

180.57

Approximate number of developers These are estimated in the thousands (alt-
hough only hundreds appear in the credits
[219])

Development assistance tools Mailing list and git

Linux's composition in terms of programming languages shows a clear pre-

domination of C, which is considered to be an ideal language for designing

speed-critical systems. When speed is such a strict requirement that not even

C can achieve it, an assembly language is directly used for programming and

http://www.kernel.org/

© FUOC • P07/M2101/02709 135 Free Software

this, as we can see, happens with some frequency. The disadvantage of this

assembly language, in comparison with C, is that it is not as portable. Each

architecture has its set of particular instructions, which means that a lot of

code written for an architecture in assembly language has to be ported to the

other architectures. The incidence of the rest of the languages, as shown in the

attached table, is marginal and they are limited to installations functions and

development utilities. The version analysed for this book was Linux 2.6.20, as

it was published on 20th February 2007 (without including any subsequent

patches).

Table 5. Programming languages used in Linux

Programming language Code lines Percentage

C 4,972,172 95.71%

Assembler 210,693 4.06%

Perl 3,224 0.06%

Yacc 2,632 0.05%

Shell 2,203 0.04%

9.2. FreeBSD

As we have mentioned in the chapter on the history of free software, there are

other types of free operating systems, apart from the popular GNU/Linux. A

family of these are the "inheritors" of the distributions of Berkeley University,

in California (US): BSD type systems. The oldest and most well-known BSD

system is FreeBSD, which was created in early 1993, when Bill Jolitz stopped

publishing the unofficial updates to 386BSD. With the assistance of the com-

pany Walnut Creek CDROM, which subsequently changed its name to BSDi,

a group of volunteers decided to carry on creating this free operating system.

The main objective of the FreeBSD project is the creation of an operating sys-

tem that can be used without any type of obligations or ties, but that has all

the advantages of code availability and is carefully processed to guarantee the

quality of the product. The user has the liberty to do whatever they like with

the software, either by modifying it according to their wishes or by redistri-

buting it in an open form or even in a closed form, under the terms that they

wish, with or without modifications. As the name itself indicates, the FreeBSD

project is based, therefore, on the philosophy of BSD licenses.

9.2.1. History of FreeBSD

Version 1.0 appeared towards the end of 1993 and was based on 4.3BSD Net/2

and 386BDS. 4.3BSD Net/2 had code that was created in the seventies, when

Unix was being developed by AT&T, which, as it turned out, involved a series

© FUOC • P07/M2101/02709 136 Free Software

of legal problems that were not resolved until 1995, when FreeBSD 2.0 was

published without the original code developed by AT&T but based on 4.4BSD-

Lite, a light version of 4.4BSD (in which many of the modules had been elimi-

nated for legal reasons, apart from the fact that the port for Intel systems was

still incomplete) that was released by the University of California.

The history of FreeBSD would not be complete if we neglected to mention its

"sister" distributions, NetBSD and OpenBSD. NetBSD appeared as version 0.8

in the middle of 1993. The main aim was for it to be very portable (although at

the beginning it was only an adaptation for i386); consequently, the product's

motto was: "Of course it runs NetBSD". OpenBSD arose from the division of

NetBSD caused by philosophical differences (as well as personal differences)

between developers in mid-1996. The focus is mainly on security and crypto-

graphy and they say that it is the safest operating system that exists, although,

as it is based on NetBSD it is also highly portable.

9.2.2. Development in FreeBSD

The development model used by the FreeBSD project is based mainly on two

tools: The CVS version control system and the GNATS bug-tracking software.

The whole project is based on these two tools, as is confirmed by the fact that

a hierarchy has been created on the basis of these tools. In effect, it is the

committers (the developers with write-access to the CVS repository) who have

the most authority for the project, either directly or indirectly through the

choice of the core group, as we shall see in the next section.

You do not have to be a committer in order to make bug reports in GNATS,

which means that anyone who wishes to can report a bug. All the (open) con-

tributions in GNATS are evaluated by a committer, who may assign the (analy-

sed) task to another committer or request more information from the person

that originally made the bug report (feedback). There are situations in which

the bug has been solved for some recent branches, which will then be speci-

fied with the suspended status. In any case, the goal is that the report should

be closed, once the error has been corrected.

FreeBSD distributes its software in two forms: on the one hand, the ports,

a system that downloads the source codes, compiles them and installs the

application in the local computer, and on the other, the packages, which are

simply the source codes of the precompiled ports and, therefore, in binary. The

most important advantage of the ports over the packages is that the former

allow the user to configure and optimise the software for their computer. On

the other hand, in the package system, as they are already precompiled, it

takes much less time to install the software.

© FUOC • P07/M2101/02709 137 Free Software

9.2.3. Decision-making process in FreeBSD

The board of directors of FreeBSD, famously called the core team, is in charge of

defining the direction of the project and ensuring that the objectives are met,

as well as mediating in cases in which there are conflicts between committers.

Until October 2000, it was a closed group, which could only be joined by an

express invitation from the core team itself. As of October 2000, the members

are elected periodically and democratically by the committers. The most im-

portant rule for the election of the core team is as follows:

1) The committers that have made at least one commit over the last year have

the right to vote.

2) The Board of Directors will be renewed every two years.

3) The members of the board of directors may be "expelled" by a vote of two

thirds of the committers.

4) If the number of members of the board of directors is less than seven, new

elections will be held.

5) New elections are held when a third of the committers vote for this.

6) Any changes in the rules require a quorum of two thirds of the committers.

9.2.4. Companies working around FreeBSD

There are numerous companies that offer services and products based on Fre-

eBSD, which FreeBSD lists on the project's website. In this presentation of Fre-

eBSD we will learn more about the most significant aspects: BSDi and Walnut

Creek CDROM.

FreeBSD was born partly due to the foundation of the company BSDi in 1991

by the people from CSRG (Computer Systems Research Group) of the Univer-

sity of Berkeley, which would provide commercial support for the new ope-

rating system. Apart from the commercial version of the FreeBSD operating

system, BSDi also developed other products, such as an Internet server and a

gateway server.

Walnut Creek CDROM was created with the aim of commercialising FreeBSD

as the final product, in such a way that it could be considered as a distributi-

on in the style of those that exist for GNU/Linux, but with FreeBSD. In No-

vember 1998, Walnut Creek broadened its horizons with the creation of the

FreeBSD Mall portal, which would commercialise all types of products based

© FUOC • P07/M2101/02709 138 Free Software

on FreeBSD (from the distribution itself to t-shirts, magazines, books, etc.),

and announce third-party products on its website and provide professional

FreeBSD support.

In March 2000, BSDi and Walnut Creek merged under the name BSDi to work

together against the Linux phenomenon, which was clearly leaving BSD sys-

tems in general and FreeBSD particularly, standing in the shadows. A year la-

ter, in May 2001, Wind River purchased the part that was dedicated to genera-

ting the BSDi software, with the clear intention of boosting the development

of FreeBSD for its use in embedded systems and intelligent devices connected

to the Network.

9.2.5. Current status of FreeBSD

According to the latest data from the poll that Netcraft performs periodically,

the number of web servers that run FreeBSD is approximately two million.

A new user who wished to install FreeBSD could choose between version 6.2

(which could be considered as the "stable" version) or the more advanced or

"development" branch. Whilst the former provides more stability, especially

in areas such as symmetric multiprocessing, which has been completely rede-

veloped in the newer versions, the latter allows users to enjoy the latest de-

velopments. It is also important to bear in mind that the developed versions

tend to include test code, which slightly affects the system's speed.

One of the star features of FreeBSD is what is known as the jails. The jails

minimise the damage that might be caused by an attack on basic network

services, such as Sendmail for the emails or BIND (Berkeley Internet Name

Domain) for name management. The services are placed in a jail so that they

run in an isolated environment. The jails can be managed using a series of

utilities included in FreeBSD.

9.2.6. X-ray of FreeBSD

As we have mentioned in this last section, BSD's functions are not restricted

solely to developing an operating system kernel, but also include the integra-

tion of a multitude of utilities that are distributed together in the style of the

GNU/Linux distributions. The fact that the development process of FreeBSD

is very closely linked to the CVS versions control system means by studying

the system, we can obtain a good idea of what FreeBSD consists of. The figures

shown below correspond to the FreeBSD analysis performed on 21st August

2003.

One of the most interesting aspects of FreeBSD is that the figures are very

similar to the ones that we have already looked at in KDE and GNOME: the

size of the software easily exceeds five million lines of code, the number of files

is approximately 250,000 and the total number of commits is approximately

two million. However, it is interesting to observe that the main difference

© FUOC • P07/M2101/02709 139 Free Software

between GNOME and KDE in respect of FreeBSD is the age of the project.

FreeBSD recently made to its tenth year and it has been around for almost

twice as long as the desktop environments with which we are comparing it.

That the size should be similar, despite the fact that the development period

has been must longer, is partly due to the fact that FreeBSD did not attract

as many developers. There is a list of approximately four hundred developers

with write-access to the CVS (committers), whereas the number of developers

listed in the FreeBSD manual is approximately one thousand. This is why the

activity registered in FreeBSD's CVS is lower than the average (five hundred

commits per day) than that registered in both GNOME (nine hundred) and

KDE (one thousand seven hundred, including the automatic commits).

We have considered as the basic system of FreeBSD all that is placed in the

src/src directory of the root module of the CVS. The activity that has been re-

gistered in the basic system over the last ten years is that of more than half

a million commits. There are more than five million lines of code, although

we should remember that this does not only include the kernel, but many

additional utilities, including games. If we take only the kernel into account

(which is in the subdirectory sys), the scale is of 1.5 million of source code

lines, predominantly in C.

It is interesting to consider how the time estimate given by COCOMO corres-

ponds exactly to the FreeBSD project's real time, although the estimate of the

average number of developers is much higher than the effective number. We

should also point out that in the last year, only seventy five committers have

been active, whereas COCOMO supposes that over the ten years of develop-

ment, the number of developers should be 235.

Finally, we must remember, as we have mentioned, that FreeBSD's main acti-

vity is based around the CVS and the bug control system and GNATS activities.

Table 6. Analysis of FreeBSD

Website http://www.FreeBSD.org

Beginning of the project 1993

License Of BSD type

Analysed version 4,8

Source code lines. 7,750,000

Lines of source code (kernel only) 1,500,000

Number of files 250,000

Cost estimate $ 325,000,000

Runtime estimate 10.5 years (126 months)

http://www.FreeBSD.org/

© FUOC • P07/M2101/02709 140 Free Software

Estimate of average number of developers 235

Approximate number of developers 400 committers (1,000 collaborators)

Number of committers active in the last year 75 (less than 20% of the total)

Number of committers active in the last two years 165 (approximately 40% of the total)

Number of commits in the CVS 2,000,000

Average number of commits (total) per day Approximately 500

Development assistance tools CVS, GNATS, mailing list and news site

C is the predominant language in FreeBSD and it keeps a greater distance from

C++ than the other case that we have studied in this chapter. It is interesting

to note that the number of liens of code in the assembly language contained

in FreeBSD, matches, in terms of the scale, those of Linux, although those

corresponding to the kernel are only twenty five thousand, in total. To sum-

marise, we could say that in FreeBSD, the more classical languages within free

software, C, Shell and Perl predominate and that the other languages that we

have looked at in other applications and projects, C++, Java, Python. have not

been integrated.

Table 7. Programming languages used in FreeBSD

Programming language Code lines Percentage

C 7,080,000 92.0%

Shell 205,000 2.7%

C++ 131,500 1.7%

Assembler 116,000 1.5%

Perl 90,900 1.20%

Yacc 5,800 0.75%

9.2.7. Academic studies on FreeBDS

Despite certainly being a very interesting project (we can look at its history by

analysing the versions system, going back up to 10 years!), FreeBSD has not

inspired that much interest in the scientific community. There is, however,

one research team that has shown interest in the FreeBSD project, from va-

rious points of view ("Incremental and decentralized integration in FreeBSD")

[149], which has especially focused on how software integration problems are

resolved in an incremental and decentralised fashion.

© FUOC • P07/M2101/02709 141 Free Software

9.3. KDE

Although, in all probability, it was not the first solution in terms of user-fri-

endly desktop environments, the dissemination of the Windows 95 operating

system in mid-1995 involved a radical change in the way non-specialised users

interacted with computers. From the one-dimensional systems of lines of ins-

tructions (the terminals), the metaphor of the two-dimensional desktop envi-

ronment was born, where the mouse began to be used more than the keybo-

ard. Windows 95, more than a technological innovation, must be credited as

being the system that managed to cover all the personal and office environ-

ments, setting the standards that would be followed in the future (technical

and social rules that, we are still, in some cases, suffering from in the early

21st Century).

Before desktop systems were created, each application managed its own appe-

arance and manner of interacting with the user, autonomously. On desktops,

however, the applications must have common properties and an appearance

that is shared by the applications, which eases the pressure on the user, who

can reuse the way of interacting learnt whilst using one application, when using

another. This also eased the pressure on the application developers, as they

did not have to deal with the problem of creating the interactive elements

starting from zero (which is always a complicated task), but could start from

a predefined framework and predefined rules.

9.3.1. History of KDE

Unix followers were quick to note the outstanding success of Windows 95

and, given that Unix environments did not have systems that were as intui-

tive whilst still being free, they decided to get to work. The KDE K Desktop

Environment project was born from this effort in 1996; it was designed by

Matthias Ettrich (creator of LyX, an editing programme in the TeX typeset)

and other hackers. The KDE Project proposed the following aims:

• To provide Unix systems with a user-friendly environment that was, at the

same time, open, stable, trustworthy and powerful.

• To develop a set of libraries for writing standard applications on a graphical

system for Unix X11.

• To create a series of applications that would allow the user to achieve their

objectives effectively and efficiently.

A controversy was created when the members of the newly-created KDE pro-

ject decided to use a library orientated to objects called Qt, belonging to the

Norwegian firm Trolltech, which was not covered under any free software li-

cense. It turned out that, although the KDE applications were licensed under

GPL, they linked with this library, which meant that it was impossible to redis-

Note

Originally, the name KDE sto-
od for Kool Desktop Environ-
ment, but it was subsequently
changed simply to K Desktop
Environment. The official ex-
planation was that the letter K
is just before the L, for Linux,
in the Roman alphabet.

© FUOC • P07/M2101/02709 142 Free Software

tribute them. Consequently, one of the four freedoms established by Richard

Stallman in the Free Software Manifesto was being violated [117]. As of versi-

on 2.0, Trolltech distributes Qt under a dual license that specifies that if the

application that uses the library operates under the GPL, then the license valid

for Qt is the GPL. Thanks to this, one of the most heated and hot-tempered

debates in the world of free software had, fortunately, a happy ending.

9.3.2. Development of KDE

KDE is one of the few free software projects that generally follows a new ver-

sion launch schedule (let us remember, for example, that there will be a new

Linux version "when it is ready", whereas, as we shall discuss later, GNOME

has always suffered significant delays when it came to releasing new versions).

The numbering of the new versions follows a perfectly defined policy. The

KDE versions have three version numbers: one higher one and two lower ones.

For example, in KDE 3.1.2, the higher number is the 3, whereas the 1 and 2

are the lower numbers. Versions with the same higher number have binary

compatibility, which means that it is not necessary to recompile the applica-

tions. Until now, the changes in the higher number occurred in parallel with

the changes in the Qt library, which shows how the developers wanted to

take advantage of the new functionalities in the Qt library in the imminent

version of KDE.

Where the lower numbers are concerned, the versions with one single lower

number are versions in which they have included both the new functionali-

ties and in which the bugs that have been discovered, have been corrected.

The versions with a second lower number do not include new functionalities

in respect of the versions with the first lower number, and only contain the

bug corrections. The following example will explain this better: KDE 3.1 is a

third-generation version of KDE (higher number 3) to which new functionali-

ties have been added, whereas KDE 3.1.1 is the previous version with the same

functionalities, but with all the bugs that have been found corrected.

KDE was built, shortly after the project began, in an association registered in

Germany (KDE e.V.) and, as such, the articles of association meant that there

has to be a managing committee. The influence of this managing committee

on the development is nil, as its main task is the administration of the associ-

ation, especially where the donations that the project receives are concerned.

In order to promote and disseminate KDE, the KDE League, which includes

all interested companies, was created, as we shall discuss below.

9.3.3. The KDE League

The KDE League is a group of companies and individuals from KDE that ha-

ve the objective of enabling the promotion, distribution and development of

KDE. The companies and individuals that participate in the KDE League do

not have to be directly involved in the development of KDE (although the

© FUOC • P07/M2101/02709 143 Free Software

members are encouraged to become involved), but simply represent an indus-

trial and social framework that is friendly to KDE. The aims of the KDE League

are as follows:

• Promoting, providing and facilitating the formal and informal education

of the functionalities, capabilities and other qualities of KDE.

• To encourage corporations, governments, companies and individuals to

use KDE.

• To encourage corporations, governments, companies and individuals to

participate in the development of KDE.

• To provide knowledge, information, management and positioning around

KDE in terms of its use and development.

• To foster communication and cooperation between KDE developers.

• To foster communication and cooperation between KDE developers and

the general public through publications, articles, websites, meetings, par-

ticipation in conferences and exhibitions, press articles, interviews, pro-

motional materials and committees.

The companies that participate in the KDE League are mainly distribution

designers (SuSE, now part of Novell, Mandriva, TurboLinux, Lindows and Han-

com, a Korean free software distribution), development companies (Trolltech

and Klarälvdalens Datakonsult AB), plus the giant IBM and a company created

with the aim of promoting KDE (KDE.com). Of all these, we must especially

mention Trolltech, Novell and Mandriva Software, whose involvement has

been essential and whose business models are very closely linked to the KDE

project:

• Trolltech is a Norwegian company based in Oslo that develops Qt, the li-

brary that can be used as a graphic interface for the user and an API for

developers, although it can also work as an element embedded in PDA

(such as the Sharp Zaurus). The importance of the KDE project for Troll-

tech is evidenced by two basic elements in its commercial strategy: on

the one hand, it recognises KDE as its main promotion method, encou-

raging the development of the desktop and accepting and implementing

the proposed improvements or modifications; on the other hand, some of

the most important KDE developers work professionally for Trolltech; the

most well-known example is that of Matthias Ettrich himself, who foun-

ded the project, which doubtlessly benefits both the KDE project and the

company itself. Trolltech's involvement in the KDE project is not exclu-

sively limited to the Qt library, as is proven by the fact that one of the

© FUOC • P07/M2101/02709 144 Free Software

main developers of KOffice, KDE's office software package, currently has

a part-time contract with them.

• SuSE (now part of Novell) has always shown its special predilection for

the KDE desktop system, partly due to the fact that most of its developers

are of German or Central European origin, as is the company itself. SuSE,

aware of the fact that the better and easier the desktop environment that

its distribution offers, the greater its implementation and, therefore, the

sales and support requests, has always had a very active policy in terms

of the budget allocated to professionalizing key positions within the KDE

project. As an example, the current administrator of the version control

system and another two of the main developers are all on SuSE's payroll.

Likewise, within SuSE's workforce, there are a dozen developers that can

spend some of their working time on developing KDE.

• The Mandriva distribution is another one of the biggest backers of KDE

and a number of the main developers work for it. Its financial situation,

which has included bankruptcy from 2003, has meant that it has lost in-

fluence over the last few years.

9.3.4. Current status of KDE

After the publication of KDE 3 in May 2002, the general opinion is that the free

desktops are on a par with their proprietary competitors. Some of its greatest

achievements include the incorporation of a components system (KParts) that

makes it possible to embed some applications in others (a piece of a KSpread

spreadsheet in the KWord word processor) and the development of DCOP, a

simple system for processes to communicate with each other, with authenti-

cation. DCOP was the project's commitment that acted in detriment to the

CORBA technologies, a widely-debated subject within the world of free desk-

tops, especially for GNOME, where it was decided that CORBA and KDE tech-

nologies would be used. History seems to have put each technology in its pla-

ce, as can be seen from the DBUS proposal (an improved type of DCOP) from

FreeDesktop.org, a project interested in promoting the interoperability and

the use of joined technologies in free desktops, which is, coincidentally, led

by one of the most well-known GNOME hackers.

The following table summarises the most important characteristics of the KDE

project. The licenses that the project accepts depend on whether they are for

an application or a library. The library licenses provide greater "flexibility" for

third parties; in other words, they make it possible for third parties to create

proprietary applications that are linked to the libraries.

The latest KDE version is, as at early 2007, version 3.5.6 and the fourth gene-

ration, KDE 4, which will be based on Qt4, is expected to arrive in mid-2007.

The generation change involves a lot of effort on adapting the version, which

© FUOC • P07/M2101/02709 145 Free Software

is a tedious and time-costly task. However, this does not mean that the "old"

applications will no longer work. Generally, so that the applications will con-

tinue to work, the older versions of the libraries on which they were based

are also included, although this means that various versions of the libraries

have to be loaded simultaneously in the memory, with the ensuing waste of

system resources. The KDE developers view this effect as an inherent part of

the development of the project and, therefore, as a lesser evil.

9.3.5. X-ray of KDE

Where the scale of KDE is concerned, the figures that we will now discuss

correspond to the status of CVS in August 2003, which means that they should

be taken with the usual reservations that we have already discussed, plus one

more: some of the modules that have been used in this study are still under

development and do not fulfil the criteria of being a finished product. This

shouldn't really have any effect for our purposes, as we are more interested in

the scale of the results than the exact numbers.

The source code included in KDE's CVS is in the total sum of six million lines

of code in different programming languages, as we shall show below. The time

required to create KDE would be approximately nine and a half years, which

is more than the project's seven years, and the estimated average number of

developers working full-time would be two hundred. If we take into account

the fact that KDE had approximately eight hundred people with write-access

to CVS in 2003 (of which half have been inactive over the last two years)

and the fact that the number of KDE developers with full-time contracts has

not been more than twenty at any given time, we can see that KDE's level of

productivity is much, much higher than the estimate provided by COCOMO.

Note

A company that wanted to develop a product of this scale starting from zero would have
to invest more than 250 million dollars; for comparative purposes, this sum would be
equivalent to an investment of a car manufacturer in the creation of a new production
plant in Eastern Europe or what a well-known oil company is planning to spend in order
to open two hundred petrol stations in Spain.

It is also interesting to see that a large part of the effort, almost half of that

expended on the development of the KDE project, would correspond to the

translation of the user interface and the documentation. Although very few

(approx. one thousand) of the programming lines are concerned with this

task, the number of files dedicated to this purpose is seventy five thousand

for translations (a sum that increases to one hundred thousand if we include

the documentation in the different formats), which comprises almost a fourth

(third) of the 310,000 files that there are in CVS. The combined activity of

CVS is of one thousand two hundred commits per day, which means that the

average time between commits is approximately one minute10.

(10)Two observations should be
made on this point: the first is that
when a commit including various
files is made, it is as if there had
been one separate commit for each
file; the second is that the number
of commits is an estimated sum, as
the project has a series of scripts
that perform commits automati-
cally.

© FUOC • P07/M2101/02709 146 Free Software

Where the tools, the information locations and the development assistance

events are concerned, we will see that the range of possibilities offered by KDE

is much wider than that used in Linux. Apart from the version control system

and the mailing lists, KDE has a series of websites providing information and

technical and non-technical documentation on the project. There is also a

news site among these sites where new solutions are presented and proposals

are debated. The news site, however, cannot be considered as a replacement

for the mailing lists, which, as occurs with Linux, is where the real debates

take place and the decisions are made and the future strategies devised; the

news site is really more of a meeting point for the users. Finally, KDE has been

organising regular meetings for three years, in which the developers and the

collaborators meet for approximately a week to present the latest innovations,

develop, debate and get to know each other and have a good time (not neces-

sarily in that order).

Table 8. KDE Analysis

Website http://www.kde.org

Beginning of the project 1996

License (for applications) GPL, QPL, MIT, Artistic

License (for libraries) LGPL, BSD, X11

Analysed version 3.1.3

Source code lines. 6,100,000

Number of files (code, documentation, etc.) 310,000 files

Cost estimate $ 255,000,000

Runtime estimate 9.41 years (112.98 months)

Estimate of average number of developers 200.64

Approximate number of developers Approximately 900 committers

Number of committers active in the last year Around 450 (approximately 50% of the to-
tal)

Number of committers active in the last two
years

Around 600 (approximately 65% of the to-
tal)

Approximate number of translators (active) Approximately 300 translators for more than
50 languages (including Esperanto).

Number of commits (by developers) in the
CVS

Approximately 2,000,000 (estimated figure
not including automatic commits)

Number of commits (by translators) in the
CVS

Approximately 1,000,000 (estimated figure
not including automatic commits)

Average number of commits (total) per day 1,700

Tools, documentation and development as-
sistance events

CVS, mailing lists, website, news site, annual
meetings

http://www.kde.org/

© FUOC • P07/M2101/02709 147 Free Software

Where the programming languages used in KDE are concerned, C++ predo-

minates. This is mainly due to the fact that this is the native language of Qt,

although a great effort is expended on providing links to allow developments

in other programming languages. Certainly, the number of lines of code in

the minority languages corresponds almost integrally to the actual project for

creating the link, although this does not mean that they are not used at all,

as there are numerous projects external to KDE that use them.

Table 9. Programming languages used in KDE

Programming language Code lines Percentage

C++ 5,011,288 82.05%

C 575,237 9.42%

Objective C 144,415 2.36%

Shell 103,132 1.69%

Java 87,974 1.44%

Perl 85,869 1.41%

9.4. GNOME

The main objective of the GNOME project is to create a desktop system for

the end user that is complete, free and easy to use. Likewise, the idea is for

GNOME to be a very powerful platform for developers. The initials GNOME

stand for GNU Network Object Model Environment. Since GNOME started, va-

rious ways have been proposed for translating it into Spanish, but none of

these ways has ever managed to satisfy everyone involved. However, from the

name, we see that GNOME is part of the GNU project. Currently, all the code

contained in GNOME must be under a GNU GPL or a GNU LGPL license. We

can also see that the networks and the object-orientated modelling are extre-

mely important.

9.4.1. History of GNOME

Whilst the freedom of KDE was still being argued about, in the summer of

1997, as fate would have it, Miguel de Icaza and Nat Friedman met at Redmond

during some workshops organised by Microsoft. It is probable that this mee-

ting caused a radical turnaround in both, resulting in the creation of GNOME

by Miguel de Icaza when he returned to Mexico (along with Federico Mena

Quintero) and his admiration for distributed object technologies. De Icaza and

© FUOC • P07/M2101/02709 148 Free Software

Mena decided to create an environment that would be an alternative to KDE,

as they understood that a reimplementation of a proprietary library would

have been a task destined to failure. And thus GNOME was born.

Since those ancient times in 1997, GNOME has gradually grown and continu-

es to grow, with its repeated publications. Version 0.99 was launched in No-

vember 1998, but the first really popular version, distributed practically with

any GNU/Linux distribution, would be GNOME 1.0, published in March 1999.

It should be noted that the experience of this first stable version of GNOME

was not very satisfactory, as many considered it to be full of critical bugs. For

this reason, GNOME October (GNOME 1.0.55) is treated as the first version

of the GNOME desktop environment that was truly stable. As we can obser-

ve, with GNOME October, the developers did not use numerated publication

version so as to avoid entering a "versions race" against KDE. The first GUA-

DEC, the GNOME users and developers European conference, was held in Pa-

ris in 2000 and narrowly missed coinciding with the publication of the new

version of GNOME, called GNOME April. It was the last version to be named

after a month, as it turned out that this system created more confusion than

anything else (for example, GNOME April was launched after GNOME Octo-

ber, although one could be forgiven for assuming the opposite). In October of

that year, after numerous debates over the months in different mailing lists,

the GNOME Foundation, which we shall discuss in subsequent sections, was

created.

GNOME 1.2 was a step forward in terms of the architecture used by GNOME,

an architecture that continued to be used in GNOME 1.4. This era was charac-

terised by the second GUADEC, which took place in Copenhagen. What had

begun as a small meeting of a few hackers, became a great event that captured

the attention of the whole software industry.

In the meantime, the argument about the freedom of KDE was resolved with

Trolltech's change of position, when it ended up licensing Qt under a dual li-

cense, which was for free software for applications that work with free softwa-

re. Today, there is no doubt that that both GNOME and KDE are free desktop

environments, which means that we can say that the development of GNO-

ME has encouraged the creation of not just one free desktop environment,

but two.

9.4.2. The GNOME Foundation

The most difficult problem to take on board when you hear about GNOME for

the first time is the organisation of the more than one thousand contributors

to the project. It is paradoxical that a project with a structure that tends toward

the anarchic, should be this successful and achieve complex objectives that

only a few multinationals in the IT sector would be able to achieve.

© FUOC • P07/M2101/02709 149 Free Software

Although GNOME was created with the clear aim of providing a user-friendly

and powerful environment, to which new programmes would gradually be

added, it soon became apparent that it would be necessary to create a body

that would have certain responsibilities that would allow them to promote

and boost the use, development and dissemination of GNOME: consequently,

the GNOME Foundation was created in 2000; its headquarters are situated in

Boston, US.

The GNOME Foundation is a non-profit organisation and not an industrial

consortium; it has the following functions:

• Coordinating the publications.

• Deciding which projects are part of GNOME.

• It is the official spokesperson (for the press and for both commercial and

non-commercial organisations) of the GNOME project.

• Promoting conferences related to GNOME (such as the GUADEC).

• Representing GNOME in other conferences.

• Creating technical standards.

• Promoting the use and development of GNOME.

In addition, the GNOME Foundation receives financial funds for promoting

and boosting the functions mentioned above, as this was impossible to do in

a transparent manner before the foundation was created.

Currently, the GNOME Foundation has one full-time employee that is in char-

ge of solving all the bureaucratic and organisational tasks that have to be done

in a non-profit organisation that holds regular meetings and conferences.

In general terms, the GNOME Foundation is divided into two large commit-

tees: a managing committee and an advising committee.

The managing committee (the Board of Directors) is formed, at the most, by

fourteen members elected democratically by the members of the GNOME

Foundation. A "meritocratic" model is followed, which means that, in order

to be a member of the GNOME Foundation, one has to have cooperated in

one way or another with the GNOME project. The contribution does not ne-

cessarily have to involve source code; there are also tasks that require trans-

lation, organisation, dissemination, etc, which one could perform and then

apply for membership of the GNOME Foundation, in order to have the right

to vote. Therefore, it is the members of the Foundation that can put themsel-

ves forward for the board of directors and it is the members that, democrati-

© FUOC • P07/M2101/02709 150 Free Software

cally, choose their representatives on the board from the persons that have

put themselves forward. Currently, voting is by email. The duration of the

term as member of the board of directors is one year, after which elections

are held again.

There are some basic regulations for guaranteeing the transparency of the bo-

ard of directors. The most remarkable one is the limitation on the number of

members affiliated to the same company, which cannot exceed four employe-

es. It is important to emphasize that the members of the board of directors are

always so in their personal capacity, and never in representation of a company.

Nevertheless, after a long discussion, it was agreed that this clause would be

included to avoid any mistrust.

The other committee within the GNOME Foundation is the advising commit-

tee, which has no authority to make decisions but that serves as a vehicle for

communicating with the managing committee. It is formed by commercial

companies working in the software industry, as well as non-commercial orga-

nisations. Currently, its members include Red Hat, Novell, Hewlett-Packard,

Mandrake, SUN Microsystems, Red Flag Linux, Wipro, Debian and the Free

Software Foundation. All companies with more than ten employees are requi-

red to pay a fee in order to be part of the board of advisors.

9.4.3. The industry working around GNOME

GNOME has managed to enter the industry substantially, in such a way that

various companies have participated very actively in its development. Of all of

these, the most important cases are those of Ximian Inc., Eazel, the RHAD Labs

by Red Hat and, more recently, SUN Microsystems. We will now describe, for

each case, the motivations of the companies as well as their most important

contributions to the GNOME desktop environment:

• Ximian Inc. (originally called Helix Inc.) is the name of the company that

was founded in 1999 by Miguel de Icaza, the cofounder of GNOME, and

Nat Friedman, one of GNOME's hackers. The main objective was to bring

together the most important GNOME developers under the same umbre-

lla to maximise development, which is why it is not surprising that its

current and past employees have included around twenty of the most ac-

tive GNOME developers. The application that Ximian put the most effort

into from the very start was Evolution, a complete personal information

management system in the style of Microsoft Outlook, which included

an email client, agenda and a contacts address book. The products that

Ximian sold were the Ximian Desktop (a version of GNOME with more

corporate purposes), Red Carpet (mainly, although not limited to, a GNO-

ME software distribution system) and finally MONO (a reimplementation

of the .NET development platform), although the latter project is not, as

yet, related in any way to GNOME. Ximian also developed an application

that permits Evolution to interact with an Exchange 2000 server. This ap-

© FUOC • P07/M2101/02709 151 Free Software

plication, whilst being quite small, was very controversial because it was

published with a non-free license (subsequently, in 2004, this component

was also licensed as free software). In August 2003, Novell, as part of its

strategy for entering the GNU/Linux desktop, bought Ximian.

• Eazel was founded in 1999 by a group of people who used to work for

Apple, with the aim of making the GNU/Linux environment as easy as

the Macintosh environment. The application on which they concentrated

their efforts was called Nautilus and it was supposed to be the file manager

that would definitively retire the mythical Midnight Commander, deve-

loped by Miguel de Icaza. The lack of a business model and the dotcoms

crisis, which caused the risk investors to remove all the capital that was

required for the company to carry on working, resulted in Eazel declaring

bankruptcy on 15th May 2001 and closing its doors. It did have time to

release Nautilus version 1.0 before this however, although the numbering

was rather artificial, given that the stability that one would expect in a

1.0 version was nowhere to be seen. Two years after Eazal's bankruptcy,

we were able to see how Nautilus had developed and become a complete

and manageable file manager integrated in GNOME; this means that the

story of Eazel and Nautilus can be considered as a paradigmatic case of a

programme that survives the disappearance of the company that created

it; something that is almost only possible in the world of free software.

• Red Hat created the Red Hat Advanced Development Labs, RHAD, with

the aim of ensuring that the GNOME desktop would gain user-friendliness

and power. In order to achieve this, Red Hat used half a dozen of the most

important hackers from GNOME and gave them the freedom to develop

whatever they decided was appropriate. From the RHAD Labs we have

ORBit, the implementation of CORBA used by the GNOME project, known

as "the fastest in the west". Another important aspect is the work that was

carried out on the new version of GTK+ and on GNOME's configuration

system, GConf.

• SUN Microsystems became involved in the development of GNOME at a

later stage, as GNOME was a relatively mature product by September 2000.

SUN's intention was to use GNOME as the desktop system for the Solaris

operating system. It therefore created a team to work with GNOME, whose

most important merits include the usability and accessibility of GNOME.

In June 2003, SUN announced that it would distribute GNOME 2.2 with

version 9 of Solaris.

9.4.4. GNOME's current status

GNOME, as at early 2007, is at version 2.18. Most of the key technologies on

which it is based have matured, as is evident from the version number. For

example, the CORBA broker used now is ORBit2, whilst the graphical environ-

© FUOC • P07/M2101/02709 152 Free Software

ment and API, GTK+, underwent changes devised from the experience accu-

mulated during the previous versions of GNOME. One important novelty is

the inclusion of an accessibility library, proposed by SUN, which allows pe-

ople with accessibility problems to use the GNOME environment. A special

mention should also go to Bonobo, the GNOME components system. Bono-

bo left its mark on an era within GNOME, whilst the personal information

management programme Evolution was being developed. However, time has

proven that the expectations raised by Bonobo were too high and that the

reuse of the effort expended on it by employing its components has not been

as extensive as was initially expected.

Note

The ATK library is a library of abstract classes that makes the applications accessible. This
means that people with some form of disability (the blind, the colour-blind, people with
eye problems.who cannot use the mouse, the keyboard, etc) may still use GNOME. SUN's
interest on ensuring accessibility is due to the fact that if it wishes to offer its services to
the Government of the United States, it has to meet a series of accessibility standards.
They have taken this work so seriously that there is even a blind programmer in the
GNOME development team working at SUN. In September 2002, GNOME's accessibility
architecture was given the Helen Keller Achievement Award.

9.4.5. X-ray of GNOME

The data and figures shown in table 10 bring us to the end of our presentation

of GNOME. The figures correspond to the status of GNOME's CVS as at 14th

August 2003. On that date, there were more than nine million lines of code

hosted in the CVS repository owned by the GNOME project. Even though the

most natural thing would be to compare GNOME to KDE, we must warn rea-

ders that the differences in terms of how these projects are organised make this

unadvisable, if we wish to make the comparison in equal conditions. This is

due, for example, to the fact that GNOME's CVS includes GIMP (a programme

for creating and handling graphics), which, on its own, represents more than

660,000 lines of code, or the GTK+ library, on which GNOME's development

focuses, and which, on its own, has 330,000 lines. If we add to this the fact

that GNOME's CVS repository is more inclined to open new modules for pro-

grammes (it has a total of seven hundred) than KDE's (which has less than one

hundred), we can understand why GNOME has more lines than KDE, despi-

te being a year and a half younger. The GNOME repository hosts more than

225,000 files, which have been added and modified almost two million times

(see the number of commits some rows below, in the table).

© FUOC • P07/M2101/02709 153 Free Software

Note

A company that wanted to create software of the size of GNOME's software, would have
to contract an average of approximately two hundred and fifty developers for more than
eleven years, in order to obtain a product with a similar extension, according to the CO-
COMO model used throughout this chapter. The associated cost would be approximately
400 million dollars, a figure similar to that which a well-established mobile telephone
company invested in 2003 to reinforce its network capacity, or similar to the figure that
a car manufacturing firm would pay in order to open a production plant in Barcelona.

GNOME's human resources include almost one thousand developers with write-access to
the CVS revision control system, of which almost twenty work for GNOME professionally
(full-time or part-time). Of these, only 25% have been active in the last year and 40% have
been active over the last two years. The average number of commits per day, registered
since the project began is almost one thousand. The development assistance tools used
by the GNOME project are basically the same as those used by KDE, and so we will not
go into them in this section.

Table 10. Analysis of GNOME

Website http://www.gnome.org

Beginning of the project September 1997

License GNU GPL and GNU LPGL

Analysed version 2,2

Source code lines. 9,200,000

Number of files (code, documentation,
etc.)

228,000

Cost estimate $ 400,000,000

Runtime estimate 11.08 years (133.02 months)

Estimate of average number of developers Approximately 250

Number of subprojects More than 700 modules in the CVS.

Approximate number of developers Almost 1,000 with write-access to the CVS.

Number of committers active in the last ye-
ar

Around 500 (approximately 55% of the total)

Number of committers active in the last two
years

Approximately 700 (75% of the total)

Number of commits in the CVS 1,900,000

Average number of commits (total) per day Approximately 900

Development assistance tools CVS, mailing lists, website, news site, annual
meetings

Whereas in KDE, C++ is undoubtedly the most widely-used language, in GNO-

ME, the language is C. In GNOME, as occurs in KDE, this is due to the fact

that the main library is written in C, which means that the native language

is C, whereas programmers wishing to use the other languages have to wait

for the links to appear. The most advanced linked in GNOME is the one that

is included in gnome--, which is none other than C++, which is why it is

not surprising that that is the second language in the classification. Perl has

http://www.gnome.org/

© FUOC • P07/M2101/02709 154 Free Software

always been widely accepted within the GNOME community and an example

of this fact is that in GNOME it is possible to programme in many languages.

Its implementation, however, has not been as extensive as could have been

expected and it is slightly more extensive than Shell. On another note, Python

and Lisp were accepted fairly widely in GNOME, as is proven by the relative

importance of this classification, whereas Java has never really taken off pro-

bably due to an incomplete link.

Table 11. Programming languages used in GNOME

Programming language Code lines Percentage

C 7,918,586 86.10%

C++ 576,869 6.27%

Perl 199,448 2.17%

Shell 159,263 1.73%

Python 137,380 1.49%

Lisp 88,546 0.96%

9.4.6. Academic studies on GNOME

The most important studies on GNOME in the academic sphere are the fo-

llowing two: "Results from software engineering research into open source de-

velopment projects using public data" [158] and "The evolution of GNOME"

[132].

• [158] is one of the first large-scale studies of software in the sphere of

free software. The authors of the study took advantage of the fact that

the details of the development are usually publicly accessible in order to

measure the efforts and compare them against the cost estimate models,

and traditional time and effort measurements. One of the classical models

with which they compared them was the one used in this chapter, model

COCOMO.

• [132] briefly goes over the objectives of GNOME and its short history, as

well as the GNOME project's use of technology.

9.5. Apache

The HTTP Apache server is one of the star applications of the world of free

software, as it is the web server that is most widely implemented, accor-

ding to its real-time survey (http://news.netcraft.com/archives/2003/08/01/

august_2003_web_server_survey.html) [167]. For example, in May 1999, 57%

http://news.netcraft.com/archives/2003/08/01/august_2003_web_server_survey.html
http://news.netcraft.com/archives/2003/08/01/august_2003_web_server_survey.html

© FUOC • P07/M2101/02709 155 Free Software

of web servers worked with Apache, whereas in May 2003, the percentage had

increased to 68%. Apache is available for all types of Unix (BSD, GNU/Linux,

Solaris...), Microsoft Windows and other minority platforms.

9.5.1. History of Apache

In March 1989, Tim Berners Lee, an English scientist that worked in the CERN

(Switzerland) proposed a new method for managing the huge amount of in-

formation from the CERN projects. The method would be a network of hy-

perlinked documents (hypertext, as Ted Nelson had called it already in 1965);

the WWW was born. However, it was not until November 1990 that the first

WWW software was unveiled: a package called the World Wide Web included

a web browser with a graphic interface and a WYSIWYG ("what you see is what

you get") editor. Two years later, the list of WWW servers had approximately

thirty entries, including NCSA HTTPd.

The real history of Apache began when Rob Mc Cool left the NCSA in March

1995. Apache 0.2 would be born on 18th March 1995, based on the NCSA

HTTPd 1.3 server, built by Rob McCool himself while he was at NCSA. During

those first months, Apache was a collection of patches applied to the NCSA

server, until Robert Thau launches Shambhala 0.1, an almost complete reim-

plementation that already included the API for the modules that subsequently

turned out to be so successful.

Note

The name of the Apache project is based on its philosophy of development and orga-
nisation. As was the case with the Apache tribe, the developers of Apache decided that
their organisational method should be based on the personal merits of the developers
in comparison with the rest of the Apache community. However, there is a legend that
has spread that says that the name Apache really came from the fact that in the initial
stages, it was simply a patched NCSA server, or a patchy server.

The first stable version of Apache did not appear until January 1996, when

Apache 1.0 was released, which included the loading of modules in test-mode

runtime, as well as other interesting functions. The first months of that year

were especially fruitful for the project, as version 1.1, which had authenticati-

on modules that would be checked against the databases (such as MySQL) was

published only two moths later. From that time to today, the most important

events for the project have been the introduction of total compliance with the

HTTP 1.1 standard (included in April 1997 in Apache 1.2), the inclusion of

the Windows NT platform (which began in July 1997 with the test versions of

Apache 1.3), the unification of the configuration files in one single file (which

did not happen until October 1998, in Apache 1.3.3) and the launch, still in

the test stage, of the next generation of Apache, Apache 2.

© FUOC • P07/M2101/02709 156 Free Software

In the meantime, in June 1998, IBM decided that, instead of developing its

own HTTP, it would use Apache as the engine of its product WebSphere. This

was interpreted as a huge endorsement for the Apache project from the Big

Blue and for free software in general, although it would be necessary to modify

the original Apache license slightly in order to make this work.

9.5.2. Development of Apache

The HTTP Apache server is the main project among the many that the Apac-

he Software Foundation manages. The modular design of Apache has made it

possible for there to be a series of satellite projects, based around Apache, so-

me of which have even been bigger than Apache itself. For example, the HTTP

Apache server contains the kernel of the system with the basic functionalities,

whereas the additional functionalities are provided by different modules. The

most well-known modules are mod_perl (a Perl script language interpreter em-

bedded in the web server) and Jakarta (a powerful applications server). In the

following paragraphs, we will only describe the development process followed

for the HTTP server, without taking into account the other modules, which

may have similar modules or not.

The development of the HTTP Apache server is based on the work of a small

group of developers called the Apache Group. The Apache Group consists of

the developers that have worked together on the project for a long period of

time, generally more than six months. The developer, having been invited by

a member of the Apache Group to join, is voted in by all the other members. In

the early stages, the Apache Group consisted of eight developers; this number

then increased to twelve and there are currently twenty five members.

The Apache Group is responsible for the development of the web server and,

therefore, for specific decisions regarding the development at any given mo-

ment. It is important to distinguish the Apache Group from the developers in

the core group, which is active at all times. The voluntary nature of the work

performed by most of the developers makes it unlikely that all the people that

comprise the Apache Group will be active at all times, which means that the

core is defined as the people who may take care of the tasks in Apache in a

certain period of time. In general, the decisions that have to be made by the

developers belonging to the core group are limited to voting for the inclusion

or not of code, although in reality this is reserved only for large-scale changes

and questions of design. On another note, they usually have write-access to

the CVS repository, which means that they act as guardians for the incoming

code, ensuring that it is correct and of good quality.

9.5.3. X-ray of Apache

The figures shown below correspond to the HTTP Apache server version that

was available for download from the CVS server of the Apache project as at

18th April 2003. None of the numerous modules that the Apache project has,

© FUOC • P07/M2101/02709 157 Free Software

have been taken into account here. As we will see, the Apache project is relati-

vely small as compared with the other cases studied in this chapter. Although

this has already been mentioned, it is important to emphasize the modularity

of Apache, which has the following specific advantages: the kernel is small

and manageable. The CVS repository of the Apache project, which contains

the kernel of the web server and many additional modules, hosts more than

four million lines of source code, a figure that is slightly lower than those of

projects such as KDE and GNOME.

Version 1.3 of Apache had a little more than 85,000 lines of source code; ac-

cording to the COCOMO model, this would have required the work of an

average of twenty developers working full-time for a year and a half. The total

cost of the project would, at the time, be approximately 4 million dollars. In

order to prepare the Apache web server, up to sixty different committers would

have been necessary, whereas the number of developers providing input, ac-

cording to the calculations, would have been approximately four hundred.

Table 12. Analysis of Apache

Website http://www.apache.org

Beginning of the project 1995

License Apache Free Software License

Analysed version 2.2.4

Source code lines. 225,065

Number of files 2,807

Cost estimate $ 7,971,958

Runtime estimate 2.52 years (30.27 months)

Estimate of average number of developers 23.4

Approximate number of developers 60 commiters (400 developers)

Development assistance tools CVS, mailing lists, bug report system

Apache 1.3 is written almost completely in C language and there are scarcely

any other programming languages, especially if we take into account the fact

that most of the lines written in the second language, Shell, correspond to

configuration files and compilation assistance.

Table 13. Programming languages used in Apache

Programming language Code lines Percentage

C 208,866 92.8%

Shell 12,796 5.69%

http://www.apache.org/

© FUOC • P07/M2101/02709 158 Free Software

Programming language Code lines Percentage

Perl 1,649 0.73%

Awk 874 0.39%

9.6. Mozilla

The Mozilla project works on a set of integrated applications for Internet, that

are free and multiplatform, and the most notable products are the Mozilla

Firefox web browser and the Mozilla Thunderbird email and news client. This

set is also designed as a platform for developing other applications, which

means that there are many browsers that use Gecko, Mozilla's HTML engine

(such as Galeon).

The project is managed by the Mozilla Foundation, a non-profit organisation

that creates free software and is "dedicated to preserving choice and promoting

innovation on the Internet". For this reason, Mozilla's products are based on

three basic principles: they must be free software, respect the standards and

be portable to other platforms.

9.6.1. History of Mozilla

The history of Mozilla is long and convoluted but also very interesting, as it

allows us to follow the history of the WWW itself. The reason for this is that

if we trace all the persons and institutions that have been involved in the

development of Mozilla, then we arrive at the starting point of the Internet,

with the launch of the first complete internet browser.

As was the case with Apache's predecessor, it was the NCSA where the first

complete internet browser, Mosaic, was "born" in 1993. Many of the members

of the development team, with Marc Andreessen and Jim Clark at the helm,

created a small company in order to write, starting from zero (as there were

problems with the copyright on the code of Mosaic and the technical design

of the programme had its limitations see Speeding the Net: the inside story of

Netscape and how it challenged Microsoft [189]), what would subsequently be-

come the Netscape Communicator browser, which was, unarguably, the lea-

der of the market of internet browsers until the arrival of Microsoft Internet

Explorer. Apart from the purely technological innovation that the Netscape

browser represented, Netscape Inc. was also innovative in the way it managed

to corner the market. Completely contrary to what was held as common sense

at the time, its star application, the WWW browser, was available for free (and

could even be distributed with certain limitations). This approach, which was

completely unheard of in the corporate world at the time, caused a certain

© FUOC • P07/M2101/02709 159 Free Software

amount of surprise, but it turned out to be right for Netscape Inc.'s strategy,

and it was only the giant Microsoft that was able to outdo it with more ag-

gressive (and probably detrimental to free market competition) tactics.

Around 1997, Netscape's market share had dropped sharply due to the spread

of Microsoft Explorer; consequently, Netscape Inc. was studying new ways of

recovering its previous dominance. A technical report published by the engi-

neer Frank Hecker ("Setting up shop: the business of open source software",

1998) [142] proposed that the best solution to the problem was to release the

source code of the browser and benefit from the effects of the free software

community, as described by Eric Raymond in "The Cathedral and the Bazaar".

In January 1998, Netscape Inc. officially announced that it would release the

source code of its browser, marking an extremely important milestone within

the short history of free software: a company was going to publish the whole

of the source code of an application that had been a commercial product up

until then, under a free software license. The date of the launch was scheduled

for the 31st March 1998.

In the two months between January and March, the people at Netscape were

frenetically active, trying to get everything ready. The list of tasks was enor-

mous and complicated ("Freeing the source: the story of Mozilla", 1999) [134].

On the technical level, it was necessary to contact the companies that made

the modules to ask them for their consent to the change of license; if the

answer was negative, the module had to be eliminated. In addition, all the

parts written in Java had to be reimplemented, as it was considered that Java

was not free. They then decided to call the free project Mozilla, just as the

developers of Netscape had called their main component Netscape, and the

Mozilla.org domain was purchased to build a community of developers and

assistants based around this website. At the end of the process, more than one

million and a half lines of source code were released.

Note

The name Mozilla is a play on words, with a little dose of humour from of the Netscape
Inc. development team. The Mozilla name came from adapting the name Godzilla, the
monster that caused mayhem in Japanese horror films from the fifties, to make it sound
like Mosaic Killer, as the new browser, with more advanced technology, was supposed to
render Mosaic obsolete.

On another note, there was the legal question. The free licenses existing at

that time did not convince the Netscape executives, who could not see how

this could be "compatible" with the commercial nature of a business. Netsca-

pe wanted a more flexible license, that would make it possible to reach agree-

ments with third parties so as to include their code regardless of the license

or whether other commercial developers were to contribute to it, so that they

could defend their financial interests howsoever they chose. And although

they had not initially planned to create a new license, they eventually reac-

hed the conclusion that this was the only way they could achieve what they

wanted. This is how the Netscape Public License (NPL) was created: a license

© FUOC • P07/M2101/02709 160 Free Software

that was based on the basic principles of free software licenses, but that also

gave certain additional rights to Netscape Inc, which also made it a non-free

license, from the perspective of the Free Software Foundation. When the draft

of the NPL was published for public discussion, the clause providing additi-

onal rights to Netscape was heavily criticised. Netscape Inc. reacted quickly

in response to these criticisms and created an additional license, the Mozilla

Public License (MPL), which was identical to the NPL, except in that Netscape

had no additional rights.

The final decision was to release the Netscape code under the NPL license,

which provided additional rights to Netscape, and that any new code that

was included would be issued under the MPL (or a compatible license). The

corrections to the original code (licensed with the NPL) would also be covered

by this license.

Note

Currently, Mozilla accepts contributions under its own licenses, the MPL, the GPL and
the LGPL. Changing the license was not at all easy, as they had to find all the people
that had contributed code at any point so that they would give their consent to the
changeover from the NPL/MPL to the MPL/GPL/LGPL. In order to relicense the whole
code, a website, which contained a list of three hundred "lost" hackers, was created ("Have
you seen these hackers?") [38]. As at May 2007, they are still looking for two of these
developers.

Developing the original code of Netscape Communicator was, without a

doubt, more complicated than initially expected. The initial conditions we-

re already bad to start with, because what was released was, on occasions, in-

complete (all the third party modules for which no consent had been given

for the release had been removed) and it hardly worked. As if that weren't

enough, apart from the technical problem of making Mozilla work on a large

number of operating systems and platforms, there were the flaws taken from

Netscape Inc., with release cycles that were too long and inefficient for the

world of Internet and that did not distinguish between its own interests and

the community formed around Mozilla. All of this came to a head exactly a

year later when one of the most active programmers from before and after the

release, Jamie Zawinsky, decided to throw in the towel in a bitter letter ("Re-

signation and post-mortem", 1999) [237] in which he made clear his despair

and desolation.

On 15th July 2003, Netscape Inc. (now the property of America On Line) an-

nounced that it was no longer going to develop the Netscape browser and,

therefore, was no longer going to actively take care of the Mozilla project. As a

kind of "redundancy settlement" Netscape approved the creation of the Mozi-

lla Foundation, which it supported with a contribution of two million dollars.

Likewise, all of the code that was under the NPL (Netscape's public license)

was donated to the Foundation and redistributed with the licenses previously

published by the Mozilla project: MPL, LGPL and GPL.

© FUOC • P07/M2101/02709 161 Free Software

On 10th March 2005, the Mozilla Foundation announced that it would not

publish any more official versions of the Mozilla Application Suite, which

would be replaced by Mozilla SeaMonkey, which would include a web browser,

an email client, an address book, an HTML editor and an IRC client. On anot-

her note, the Mozilla project hosts various independent applications, the most

notable of which include Mozilla Firefox (web browser), which is undoubtedly

the most well-known, Mozilla Thunderbird (email and news client), Mozilla

Sunbird (calendar) , Mozilla Nvu (HTML editor), Camino (web browser desig-

ned for Mac OS X) and Bugzilla (web-based bug-tracker tool).

As time has progressed, despite the many doubts and the long periods in which

it seemed that it was destined to fail, the project now seems to be going well.

Thanks to the versatility and portability of its applications, despite requiring

many runtime resources in many cases, they are used (generally, but especially

Firefox) as the OpenOffice.org pair in the end user's desktop.

9.6.2. X-ray of Mozilla

The figures that we will discuss in this section correspond to a study of Firefox,

the most well-known of the project's applications. According to the estimates

of the COCOMO model, a company that wished to create software of this

scale would have to invest approximately 111 million dollars to obtain it. The

time it would take would be about seven years and the average number of

programmers working full-time that the company would have to use would

be approximately one hundred and twenty.

Table 14. Current status of Mozilla Firefox

Website www.mozilla-europe.org/es/products/firefox/

Beginning of the project 2002

License MPL/LGPL/GPL

Version 2.0

Source code lines. 2,768,223

Cost estimate $ 111,161,078

Runtime estimate 6.87 years (82.39 months)

Estimate of average number of develo-
pers

120

Approximate number of developers 50 committers

Development assistance tools CVS, mailing lists, IRC, Bugzilla.

C++ and C are the languages that are used the most, in that order of priority.

Perl is used and this is mainly due to the fact that the development assistance

tools created by the Mozilla project, such as BugZilla or Tinderbox, are desig-

http://www.mozilla-europe.org/es/products/firefox/

© FUOC • P07/M2101/02709 162 Free Software

ned in this language. What is surprising is the large amount of code lines in

an assembly language in an end user application. An inspection of the code

in the repository shows that, in effect, there are quite a lot of files encoded

in assembly language.

Table 15. Programming languages used in Mozilla Firefox

Programming�language Code�lines Percentage

C++ 1,777,764 64.22%

C 896,551 32.39%

Assembler 34,831 1.26%

Perl 26,768 0.97%

Shell 16,278 0.59%

C# 6,232 0.23%

Java 5,352 0.19%

Python 3,077 0.11%

Pascal 459 0.02%

9.7. OpenOffice.org

OpenOffice.org is one of the star applications in the current free software sce-

ne. It is a multiplatform office application suite that includes the key appli-

cations in an office desktop environment, such as a word processor (Writer),

a spreadsheet (Calc), a presentation programme (Impress), a graphics editor

(Draw), a tool for creating and editing mathematical formulae (Math) and,

finally, an HTML language editor (included in Writer). The interface provided

by OpenOffice.org is homogeneous and intuitive, with an appearance and

functionalities similar to those of other office applications, especially the one

that is most widely used today, Microsoft Office.

Written in C++, OpenOffice.org includes Java's API and has its own compo-

nents for embedded systems, which makes it possible to include, for example,

tables from a spreadsheet in the word processor in a very simple and intuiti-

ve way. One of its advantages is that it can handle a large amount of file for-

mats, including those of Microsoft Office. Its native file formats, unlike tho-

se of Microsoft's office suite, are based on XML, which shows that they are

clearly committed to versatility, the ease of transformation and transparency.

Currently, OpenOffice.org has been translated into more than twenty five lan-

guages and it runs on Solaris (its native system), GNU/Linux and Windows.

Versions for FreeBSD, IRIX and Mac OS X are expected in the not-too-distant

future.

© FUOC • P07/M2101/02709 163 Free Software

OpenOffice.org took its definitive name (OpenOffice, as everybody knows it,

plus the .org tag) after a court case, in which it was accused of trademark vio-

lation by another company.

9.7.1. History of OpenOffice.org

In mid-1980s, the company StarDivision was founded in the Federal Republic

of Germany, with the principal aim of creating the office application suite:

StarOffice. In summer 1999, SUN Microsystems decided to purchase the com-

pany StarDivision and make a significant commitment to StarOffice, with the

clear intention of wresting away part of the market share conquered by Mi-

crosoft at that time. In June 2000, the company launched version 5.2 of Sta-

rOffice, which could be downloaded for free by Internet.

However, StarOffice's success was limited, as the market was already strongly

dominated by Microsoft's office package. SUN decided to change its strategy

and, as occurred with Netscape and the Mozilla project, decided to take advan-

tage of free software to gain importance and implement its systems. Conse-

quently, the future versions of StarOffice (a proprietary product of SUN) would

be created using OpenOffice.org (a free product) as a source, respecting the

application programming interfaces (API) and the file formats and serving as

the standard implementation.

9.7.2. Organisation of OpenOffice.org

OpenOffice.org aims to have a decision-making structure in which all the

members of the community feel like participants. Consequently, a system was

devised so that the decision-making process would have the greatest consen-

sus possible. The OpenOffice.org project is divided into a series of subprojects

that are taken on by project members, the assistants and one single leader. Of

course, the members of a project may work on more than one project, as can

the leader. However, no one can lead more than one project at a time. The

projects are divided into three categories:

• Accepted projects. These may technical or non-technical. The leaders of

each accepted project have a vote when it comes to making global deci-

sions.

• Native-lang projects. These are all the internationalisation and localisa-

tion projects of OpenOffice.org. Currently, as we have mentioned, the-

re are more than twenty five teams that are working on translating the

OpenOffice.org applications to different languages and conventions. As a

set, native-lang projects have one single vote on global decisions.

• Incubating projects. These are the projects promoted by the community

(generally, they are experimental or small). They may become accepted

projects after a period of six months. In effect, the OpenOffice.org com-

© FUOC • P07/M2101/02709 164 Free Software

munity can guarantee that the accepted projects are based on a real in-

terest, as the mortality rate of new projects in the world of free software is

very high. In total, the incubating projects have one vote on the decisions

made.

9.7.3. X-ray of OpenOffice.org

The OpenOffice.org office suite comprises approximately four million lines of

source code distributed throughout forty five thousand files.

The COCOMO model estimates that the work required to build a "clone" of

OpenOffice.org would have to be provided by one hundred and eighty pro-

grammers working full-time for almost eight years. According to the COCO-

MO estimates, the development cost would be approximately 215 million do-

llars.

The results discussed in this section were obtained from a study of the source

code of stable version 2.1 of OpenOffice.org.

Table 16. Current status of OpenOffice.org

Website http://www.openoffice.org

Beginning of the project June 2000 (first free versions)

License LGPL and SISSL

Version 2.1

Source code lines. 5,197,090

Cost estimate $ 215,372,314

Runtime estimate 8.83 years (105.93 months)

Estimate of average number of developers 180

Approximate number of developers 200 commiters

Development assistance tools CVS, mailing lists

Where the programming languages used in OpenOffice.org are concerned, the

most prevalent is C++. It IS interesting to note how SUN's purchase of the

company resulted in the integration of a lot of Java code in the office suite,

which even exceeded the amount of language in C.

Table 17. Programming languages used in OpenOffice.org

Programming�language Code�lines Percentage

C++ 4,615,623 88.81%

http://www.openoffice.org/

© FUOC • P07/M2101/02709 165 Free Software

Programming�language Code�lines Percentage

Java 385,075 7.41%

C 105,691 2.03%

Perl 54,063 1.04%

Shell 12,732 0.24%

Yacc 6,828 0.13%

C# 6,594 0.13%

9.8. Red Hat Linux

Red Hat Linux was one of the first commercial distributions of GNU/Linux.

Today, it is probably one of the most well-known, and certainly the one that

can be considered the most "canonical" of all the commercial distributions.

The work of the distributors is basically related to integration tasks and not

so much to software development. Of course, Red Hat and other distributions

may have developers working for them, but their work is secondary for the

aims of a distribution. In general, it is assumed that the task of the distribu-

tions is to simply take the source packages (generally the files published by

the developers themselves) and bundle them so that they fulfil certain criteria

(both technical and organisational). The product of this process is a distribu-

tion: a series of properly organised bundles that make it possible for the user

to install, uninstall and update them.

Distributions are also responsible for the quality of the final product, which is

a very important aspect if we consider that many of the applications that are

included have been developed by volunteers in their free time. Consequently,

the security and stability aspects are of the essence for a distribution.

9.8.1. History of Red Hat

Red Hat Software Inc. was founded by Bob Young and Marc Ewing in 1994.

The main objective was to compile and commercialise a GNU/Linux distribu-

tion that was called (and is still called) Red Hat Linux [236]. Basically, it was a

bundled version of what existed on the Internet at that time, including docu-

mentation and support. Version 1.0 of this distribution was born in the sum-

mer of 1995. A few months later, in autumn, version 2.0, which included RPM

technology (RPM package manager was published. The RPM package manager

has become a de facto standard for bundles in GNU/Linux systems. In 1998,

version 5.2 of Red Hat was issued to the great public. For a complete history of

the names of the different versions of Red Hat, please read "The truth behind

Red Hat names" [201].

© FUOC • P07/M2101/02709 166 Free Software

Note

As of version 1.1 of Linux Standard Base (a specification designed to achieve binary com-
patibility between GNU/Linux distributions, which is taken care of by the Free Standards
Group), RPM has been chosen as the standard package manager. The Debian project con-
tinues with its own package format, as do many distributions that depend on the Debian
package management system, and they are adjusted to the standardised format using a
conversion tool called alien.

Before the RPM management system existed, almost all of the GNU/Linux dis-

tributions offered the possibility of installing the software through a menu-

based procedure, but making modifications to an existing installation, espe-

cially adding new software packages after the installation, was not easy. RPM

made that step beyond the state-of-the-art possible by providing users with

the ability to manage their own packages ("Maximum RPM. Taking the Red

Hat package manager to the limit", 1998) [83], which made it possible to de-

lete, install or update any software package existing in the distribution in a

much easier way. The RPM package system continues to be the most widely

used package management system in the different GNU/Linux distributions.

The statistics of Linux Distributions, "Facts and figures", 2003 [92], a website

that contains qualitative and quantitative information on a large number of

distributions, show that in May 2003, a large majority (sixty five) of the one

hundred and eighteen distributions used for the calculations, used the RPM

(approximately 55% of the total). In comparison, the Debian package format

(known as deb) was only used in sixteen distributions (approximately 14% of

the total).

However, Red Hat Inc. was not only known for its software distribution based

on Linux. In August 1999, Red Hat went public and its shares achieved the

eighth highest first day gain in the whole of Wall Street history. Four years la-

ter, the value of Red Hat's shares had shrunk to a hundredth of the maximum

value they reached before the dotcom crisis. Nevertheless, its successful begin-

nings on the stock market put Red Hat on the front pages of newspapers and

magazines that didn't specialise directly in IT matters. In any case, it seems

that Red Hat has managed to overcome the problems that other companies in

the business world have had with free software and the numbers it published

in the last quarter of 2002 were in the black for the first time in its history.

Another of the most important historical events involving Red Hat was the

acquisition of Cygnus Solutions in November 1999, a company founded a de-

cade before that had already proved how it was possible to earn money with

an integral strategy based on free software ("Future of Cygnus Solutions. An

entrepreneur's account") [216]. Cygnus chose the complicated market of com-

pilers to make its mark. Its commercial strategy was based on the development

and adaptation of GNU software development tools (basically GCC and GDB)

tailored to the client's needs.

© FUOC • P07/M2101/02709 167 Free Software

In September 2003, Red Hat decided to concentrate its development work on

the corporate version of its distribution and delegated the common version

to Fedora Core, an open source project independent of Red Hat.

In June 2006, Red Hat purchased the company JBoss, Inc., becoming the com-

pany in charge of developing the most important open source applications

server, J2EE.

9.8.2. Current status of Red Hat.

Currently, Red Hat Inc.'s most important products are Fedora Core and Red

Hat Network, an Internet software update service. These types of services are

designed more with the end user in mind and not so much for the corporate

environment, but they are good for Red Hat to advertise itself and to reinforce

its brand strategy.

Red Hat's "real" commercial strategy is based on the products it designs for the

corporate world. These types of products are much less well-known, but they

constitute a major part of Red Hat's turnover, much greater than that of its

most popular star products in the literal sense.

Red Hat has a distribution that is corporate-orientated, integrated around an

applications server called Red Hat Enterprise Linux AS. Clients that purcha-

se this software also receive support. The equivalent of Red Hat Network for

commercial users is Red Hat Enterprise Network, which includes system ma-

nagement and the option of obtaining updates. On anther note, Red Hat also

offers IT consultancy services and a certification programme similar to that

offered by Microsoft in the world of Windows.

9.8.3. X-ray of Red Hat

Red Hat has recently passed the milestone of fifty million lines of code, which

makes it one of the biggest software distributions that have ever existed, ex-

ceeding, as we shall see later in this chapter, the size of proprietary operating

systems. Red Hat Version 8.1 consisted of 792 packages, so we can assume that

the latest version would have had more than eight hundred packages, if we

consider that the number tends to increase slightly from version to version.

As in our previous examples, the COCOMO model has been used to estimate

the investment and effort that would have been necessary in order to create

a generation of software of the same scale. However, in Red Hat's case, we

have taken into account the fact that it is a product prepared using a series of

independent applications. Consequently, an independent COCOMO estimate

has been used for each one of Red Hat's packages, and then we have added

the estimated costs and personnel that would have been required. In order

to analyse the optimum design time for Red Hat, we have chosen the largest

package, as, in theory, all the packages are independent and could therefore

© FUOC • P07/M2101/02709 168 Free Software

be designed at the same time. For this reason, the optimum design time for

Red Hat is similar to that of the other projects presented in earlier sections

of this chapter.

According to COCOMO, approximately seven and a half years and a team

of developers, consisting of an average of one thousand eight hundred deve-

lopers, would have been necessary in order to design the Red Hat Linux 8.1

distribution, starting from zero. The cost of the final development would be

approximately 1,800 million dollars.

Note

One thousand eight hundred million dollars is the sum that the Spanish Ministry of
Defence has allocated to renewing its helicopter fleet in the latest budget. Out of that
sum, half will be invested in buying twenty four helicopters, so we could say that the
price of Red Hat would be equivalent to that of forty eight combat helicopters. Likewise,
1,800 million dollars is the total global earning from the film Titanic.

Table 18. Status of Red Hat Linux.

Website http://www.redhat.com

Beginning of the project 1993

License

Version 9,0

Source code lines. More than 50,000,000

Number of packages 792

Cost estimate $ 1,800,000,000

Runtime estimate 7.35 years (88.25 months)

Estimate of average number of develo-
pers

1,800

Approximate number of developers Red Hat employees (generally integration only)

Development assistance tools CVS, mailing lists

Due to the fact that there are many packages, the languages in Red Hat are

more diverse than the ones we have seen in the most important free software

applications. In general terms, C is very important, with more than sixty per

cent of the code lines. In second place, with more than ten million lines of

code, we have C++, followed by a long distance by Shell. It is interesting to

note that after Perl we have Lisp (mainly due to its use in Emacs), the assembly

language (of which a quarter corresponds to the language that comes with

Linux) and a language whose use is frankly declining, Fortran.

http://www.redhat.com/

© FUOC • P07/M2101/02709 169 Free Software

Table 19. Programming languages used in Red Hat.

Programming�language Code�lines Percentage

C 30,993,778 62.13%

C++ 10,216,270 20.48%

Shell 3,251,493 6.52%

Perl 1,106,082 2.22%

Lisp 958,037 1.92%

Assembler 641,350 1.29%

Fortran 532,629 1.07%

9.9. Debian GNU/Linux

Debian is a free operating system that currently uses the Linux kernel for its

distribution (although it is expected that there will be Debian distributions

based on other kernels in the future, as is the case of "the HURD"). It is cur-

rently available for various different architectures, including Intel x86, ARM,

Motorola, 680x0, PowerPC, Alpha and SPARC.

Debian is not only the biggest existing GNU/Linux distribution, but also one

of the most stable and it has received various awards for the fact that it is pre-

ferred by users. Although its user base is difficult to estimate, as the Debian

project does not sell CDs or any other media with its software and the software

that it does have can be redistributed by anyone that wishes to, we can sup-

pose, with a reasonable degree of certainty, that it is an important distribution

within the GNU/Linux market.

There is a categorisation in Debian that depends on the license and distribu-

tion requirements of the packages. The kernel of the Debian distribution (the

section called main that covers a great variety of packages) consists only of

free software in accordance with the DFSG (Debian Free Software Guidelines)

[104]. It can be downloaded from the Internet and many redistributors sell it

on CDs or in other media.

Debian distributions are created by almost one thousand volunteers (generally

IT professionals and experts). The work of these volunteers consists of taking

the source programmes, in most cases from the original authors, configuring

them, compiling them and bundling them so that an average Debian distri-

bution user only has to select the package and the system will install it with

no further problems. What may first appear as simple can become complex as

© FUOC • P07/M2101/02709 170 Free Software

soon as other factors, such as the dependencies between the different packa-

ges (package A needs package B in order to work) and the different versions

of all these packages, are taken into account.

The work performed by the members of the Debian project is the same as that

performed in any other distribution: the integration of the software so that

it all works together properly. Apart from the adaptation and bundling work,

the Debian developers are in charge of maintaining an Internet-based services

infrastructure (website, online files, bug management system, assistance mai-

ling lists, support and development, etc), various translation and internatio-

nalisation projects, the development of various tools specific to Debian and,

generally, in charge of anything that is required in order to make the Debian

distribution work.

Apart from its voluntary nature, the Debian project has a feature

that is especially unique: Debian's social contract (http://www.debian.org/

social_contract.html) [106]. This document does not only describe the Debian

project's main goals, but also the means that will be used to achieve them.

Debian is also known for having a very strict packages and versions policy,

designed to achieve the best quality in the product (the "Debian policy manu-

al") [105]. In this way, there are three different types of Debian at any given ti-

me: a stable version, an unstable version and a test version. As the name itself

indicates, the stable version is the one recommended for systems and users

that require complete stability. The software has to be subjected to a freeze

period, during which any bugs are corrected. The general rule is that the stable

Debian version must not have any known critical bug. On the other hand,

this stable version does not usually have the latest versions of the software

(the newest additions).

There are another two versions of Debian that exist alongside the stable one

for those that wish to have the most recent software. The unstable version

includes packages that are being stabilised, whereas the test version, as the

name indicates, is the one that has a greater tendency to fail and that contains

the newest of the new in terms of the latest software.

When the first study was performed, the stable version of Debian was Debi-

an 3.0 (also known as Woody), the unstable one was nicknamed Sid and the

test version was Sarge. However, Woody also went through an unstable stage

and, before that, a test stage. This is important, because what we will consi-

der in this article will comprise the different stable versions of Debian, ever

since version 2.0 was published, in 1998. For example, we have Debian 2.0

(alias Hamm), Debian 2.1 (Slink), Debian 2.2 (Potato) and, finally, Debian 3.0

(Woody).

http://www.debian.org/social_contract.html
http://www.debian.org/social_contract.html

© FUOC • P07/M2101/02709 171 Free Software

Note

The nicknames of the Debian versions correspond to the main characters in the animated
film Toy story, a tradition that started, half-jokingly and half-seriously, when version 2.0
was published and Bruce Perens, the leader of the project at the time and subsequent
founder of the Open Source Initiative and the phrase open source, was working for the
company that was designing the film. For more details regarding Debian's history and
the Debian distribution in general, we recommend "A brief history of Debian" [122].

9.9.1. X-ray of Debian

Debian GNU/Linux is probably the largest compilation of free software that

works in a coordinated manner and, doubtlessly, one of the biggest software

products ever built. Version 4.0, released in April 2007 (called Etch), consists

of more than ten thousand source packages, with more than 288 million lines

of code.

The number of lines of code in Debian 3.0 is 105 million. According to the

COCOMO model, a sum of approximately 3,600 million dollars would have

to be paid in order to obtain software similar to that bundled with this distri-

bution. As with Red Hat, the effort required to build each package separately

has been calculated and the resulting figures have then been added to each

other. For the same reason, the time it would have taken to develop Debian is

only seven years, as the packages could have all been built at the same time as

each other. However, an average of approximately four thousand developers

would have had to have been mobilised during those seven years.

Table 20. Status of Debian

Website http://www.debian.org

Beginning of the project 16/08/1993

License Those that fulfil the DFSG

Version used Debian 4.0 (alias Etch)

Source code lines. 288,500,000

Number of packages 10,106

Cost estimate $ 10,140 million

Runtime estimate 8.84 years

Approximate number of maintainers Approximately 1,500

Development assistance tools Mailing lists, bug report system

The most commonly used language in Debian 4.0 is C, with more than 51%

of the lines of code. However, as we shall show a little later in this section, the

importance of C is declining with time, as 80% of the code in the first versions

of Debian, was in C. The second most commonly used language, C++, shares

a fair part of the "blame" for the decline of C; however, C has especially been

affected by scripting languages such as Perl, Python and PHP. Amongst these,

Note

Three thousand six hundred
million dollars is the budget
allocated by the 6th EC Fra-
mework Programme for re-
search and development on
the information society. It is al-
so the sum that Telefónica in-
tends to invest in Germany in
order to implement UMTS.

http://www.debian.org/

© FUOC • P07/M2101/02709 172 Free Software

languages such as Lisp or Java (which is underrepresented in Debian due to its

policy of not accepting code that depends on Sun's private virtual machine)

sometimes manage to get in.

Table 21. Programming languages used in Debian GNU/Linux 4.0

Programming language Lines of code (in millions) Percentage

C 155 51%

C++ 55 19%

Shell 30 10%

Perl 8.1 2.9%

Lisp 7.7 2.7%

Python 7.2 2.5%

Java 6.9 2.4%

PHP 3.5 1.24%

Table 22 shows how the most important languages developed in Debian.

Table 22. Languages most used in Debian

Language Debian 2.0 Debian 2.1 Debian 2.2 Debian 3.0

C 19,400,000 76.67% 27,800,00 74.89% 40,900,000 69.12% 66,500,000 63.08%

C++ 1,600,000 6.16% 2,800,000 7.57% 5,980,000 10.11% 13,000,000 12.39%

Shell 645,000 2.55% 1,150,000 3.10% 2,710,000 4.59% 8,635,000 8.19%

Lisp 1,425,000 5.64% 1,890,000 5.10% 3,200,000 5.41% 4,090,000 3.87%

Perl 425,000 1.68% 774,000 2.09% 1,395,000 2.36% 3,199,000 3.03%

Fortran 494,000 1.96% 735,000 1.98% 1,182,000 1.99% 1,939,000 1.84%

Python 122,000 0.48% 211,000 0.57% 349,000 0.59% 1,459,000 1.38%

Tcl 311,000 1.23% 458,000 1.24% 557,000 0.94% 1,081,000 1.02%

There are languages that we could consider to be in the minority that reach

fairly high positions in the classification. This is due to the fact that, whilst

they are only present in a small number of packages, the packages in question

are quite big. Such is the case of Ada, which whilst only being in three packa-

ges (GNAT, an Ada compiler; libgtkada, a link to the GTK library and ASIS, a

system for managing Ada sources) covers 430,000 of the total 576,000 lines of

source code that have been counted in Debian 3.0 for Ada. Another similar ca-

se is Lisp, which only appears in GNU Emacs and XEmacs, but has more than

1,200,000 lines of the approximately four million in the whole distribution.

© FUOC • P07/M2101/02709 173 Free Software

9.9.2. Comparison with other operating systems

There is the proverb that says that all comparisons are odious; this is especially

true when comparing free software with proprietary software. The detailed x-

rays taken of Red Hat Linux and Debian were possible because they are exam-

ples of free software. Having access to the code (and to the other information

that has been provided in this chapter) is essential for studying the different

versions' number of lines, packages, programming languages, etc. But the ad-

vantages of free software go beyond this, because, in addition, they make it

easier for third parties, whether they are research teams or simply people that

are interested, to analyse them.

In proprietary systems in general, a study such as this would be completely

impossible. In fact, the figures provided below were obtained from the com-

panies behind proprietary software development themselves, which means

that we are not in a position to guarantee their truthfulness. To top this off,

in many cases we do not know whether they are talking about physical source

code lines, as we have done during this chapter, or whether they also include

the blank lines and comments. Furthermore, neither do we know for certain

what they include in their software, which means that we do not know whet-

her certain versions of Microsoft Windows include the Microsoft Office suite

or not.

In any case, considering all that we have discussed on this matter in previous

paragraphs, we believe that it is interesting to include this comparison, as

it helps us to see the position in which the different Red Hat and Debian

distributions are in, within a wider context. What is unquestionable is that

both Debian and Red Hat, but especially the former, are the largest collections

of software ever seen by humanity to date.

The figures cited below come from Mark Lucovsky [168] for Windows 2000,

SUN Microsystems [171] for StarOffice 5.2, Gary McGraw [169] for Windows

XP and Bruce Schneier [200] for all the other systems. Table 23 provides a

comparison, from smallest to greatest.

Table 23. Comparison with proprietary systems

System Date of publication Lines of code (approx.)

Microsoft Windows 3.1 April 1992 3,000,000

SUN Solaris 7 October 1998 7,500,000

SUN StarOffice 5.2 June 2000 7,600,000

Microsoft Windows 95 August 1995 15,000,000

Red Hat Linux 6.2 March 2000 18,000,000

Debian 2.0 July 1998 25,000,000

© FUOC • P07/M2101/02709 174 Free Software

System Date of publication Lines of code (approx.)

Microsoft Windows 2000 February 2000 29,000,000

Red Hat Linux 7.1 April 2001 32,000,000

Debian 2.1 March 1999 37,000,000

Windows NT 4.0 July 1996 40,000,000

Red Hat Linux 8.0 September 2002 50,000,000

Debian 2.2 August 2000 55,000,000

Debian 3.0 July 2002 105,000,000

9.10. Eclipse

The Eclipse platform consists of an open and extensible IDE (integrated deve-

lopment environment). An IDE is a programme consisting of a set of tools that

are useful for a software developer. The basic elements of an IDE include a

code editor, a compiler/interpreter and a debugger. Eclipse is an IDE in Java

and provides numerous software development tools. It also supports other

programming languages, such as C/C++, Cobol, Fortran, PHP or Python. Plug-

ins can be added to the basic platform of Eclipse to increase the functionality.

The term Eclipse also refers to the free software community that develops the

Eclipse platform. This work is divided into projects with the aim of providing a

robust, scalable and quality platform for the development of software with the

Eclipse IDE. The work is coordinated by the Eclipse Foundation, which as non-

profit organisation created for the promotion and development of the Eclipse

platform and that supports both the community and the Eclipse ecosystem.

9.10.1. History of Eclipse

A lot of Eclipse's programming was carried out by IBM, before the Eclipse pro-

ject was created as such. Eclipse's predecessor was VisualAge and it was built

using Smalltalk in a development environment called Envy. After Java appea-

red in the nineties, IBM developed a virtual machine that worked with both

Smalltalk and Java. The rapid growth of Java and its advantages with the fo-

cus on an Internet that was expanding heavily, forced IBM to consider aban-

doning this dual virtual machine and to build a new platform based on Java

from zero. The final product was Eclipse, which had already cost IBM appro-

ximately 40 million dollars in 2001.

Towards the end of 2001, IBM, along with Borland, created the non-profit

Eclipse foundation, thereby opening up to the open source world. This con-

sortium was gradually joined by important global software development com-

panies: Oracle, Rational Software, Red Hat, SuSE, HP, Serena, Ericsson and No-

vell, among others. There are two significant absences: Microsoft and Sun Mi-

© FUOC • P07/M2101/02709 175 Free Software

crosystems. Microsoft was excluded due to its monopoly of the market and

Sun Microsystems had its own IDE, constituting Eclipse's main competition:

NetBeans. In fact, the Eclipse name was chosen because the aim was to create

an IDE able to "eclipse Visual Studio" (Microsoft) and to "eclipse the sun" (Sun

Microsystems).

The latest stable version of Eclipse is available for the Windows, Linux, Solaris,

AIX, HP-UX and Mac OS X operating systems. All versions of Eclipse need to

have a Java Virtual Machine (JVM) installed in the system, preferably JRE (Java

Runtime Environment) or JDK (Java Developer Kit) by Sun, which, as at early

2007, are not yet free (although Sun has announced that their JVM will be).

9.10.2. Current state of Eclipse

All the work prepared for the Eclipse consortium is organised into different

projects. These projects are in turn divided into subprojects and the subpro-

jects into components. The high-level projects are managed by committees of

the Eclipse Foundation (PMC, project management committees). The following

list shows the high-level projects:

• Eclipse. Base platform for the rest of the components. This platform will

be free, robust, complete and of a good quality for the development of rich

client platforms (RCP) and integrated tools (plug-ins). The Eclipse platform's

runtime kernel is called Equinox and it is an implementation of the OSGi

specification (Open Services Gateway Initiative), which describes a servi-

ces oriented architecture (SOA) for applications.

• Tools (ETP, Eclipse tools project). Various tools and common components

for the Eclipse platform.

• Web (WTP, web tools project). Tools for the development of web applications

and JEE (Java Enterprise Edition).

• Test and performance tools project (TPTP). Testing tools and performance

level measurers so that the developers can monitor their applications and

make them more productive.

• Web reports (BIRT, business intelligence and reporting tools). Web report ge-

neration system.

• Modelling (EMP, Eclipse modelling project). Model-based development tools.

• Data (DTP, data tools platform). Support for data-handling technologies.

© FUOC • P07/M2101/02709 176 Free Software

• Embedded devices (DSDP, device software development platform). Tools for

the development of applications that are to be run on devices with limited

hardware, in other words, embedded devices.

• Service oriented architecture (SOA). Tools for developing service-oriented

projects.

• Eclipse Technology. Research, dissemination and development of the

Eclipse platform.

The principles that guide the development of the Eclipse community are as

follows:

• Quality. The software developed at Eclipse must meet the software engi-

neering quality standards.

• Development. The Eclipse platform, and all the tools based on it, must

develop dynamically in accordance with the users' requirements.

• Meritocracy. The more someone contributes, the more responsibilities

they have.

• Eclipse Ecosystem. There will be resources donated by the open source

community to the Eclipse consortium. These resources will be employed

in ways that benefit the community.

Eclipse's development process follows certain predefined phases. Firstly, there

is a phase called the pre-proposal phase, in which an individual or company

declares their interest in establishing a project. If the proposal is accepted, it

is decided whether it will be a high-level project or a subproject. The next

step is to validate the project in terms of applicability and quality. After a

phase in which the project is incubated, there will be a final revision. If the

project passes this revision, it will have proved its validity before the Eclipse

community and it will pass into the implementation phase.

9.10.3. X-ray of Eclipse

Eclipse is distributed under an EPL License (Eclipse Public License). This license

is considered free by the FSF and the OSI. Under the EPL License, it is possible

to use, modify, copy and distribute new versions of the licensed product. EPL's

predecessor is the CPL (Common Public License). The CPL was written by IBM,

whereas the EPL is the work of the Eclipse consortium.

Estimating the investment and effort put into Eclipse is not an easy task. This

is due to the fact that the source code that comprises the Eclipse ecosystem is

distributed in numerous projects and software repositories.

© FUOC • P07/M2101/02709 177 Free Software

Below are the results of applying the COCOMO model to the Eclipse platform,

which is used as the base for the rest of the plug-ins.

Table 24. Analysis of Eclipse

Website http://www.eclipse.org

Beginning of the project 2001

License Eclipse Public License

Analysed version 3.2.2

Source code lines. 2,163,932

Number of files 15,426

Cost estimate $ 85,831,641

Runtime estimate 6.22 years (74.68 months)

Estimate of average number of develo-
pers

102.10

Approximate number of developers 133 commiters

Development assistance tools CVS, mailing lists, bug-tracking system (Bugzilla)

The following table shows the programming languages used in Eclipse 3.2.2:

Table 25. Programming languages used in Eclipse

Programming language Code lines Percentage

Java 2,066,631 95.50%

C 85,829 3.97%

Perl 3,224 0.06%

C++ 5,442 0.25%

JSP 3,786 0.17%

Perl 1,325 0.06%

Lex 1,510 0.03%

Shell 849 0.04%

Python 46 0.00%

PHP 24 0.00%

http://www.eclipse.org/

© FUOC • P07/M2101/02709 178 Free Software

10.Other free resources

"If you want to make an apple pie from scratch, you must first create the universe."

"If you want to make an apple pie from scratch, you must first create the Universe."

Carl Sagan

Can the ideas behind free programmes be extended to other resources? We

could consider that other information resources that can easily be copied elec-

tronically are similar to programmes and that the same freedoms, rules and

development and business models could apply to them. However there are

some differences and the implications of these differences have meant that

the programmes have not developed with the same force. The main difference

is that all one has to do is copy the programmes to make them work, whereas

when other types of information are copied, they have to pass through a more

or less costly process before they can begin to be useful in any way, which can

go from learning a document to the production phase of hardware described

in the appropriate language.

10.1. The most important free resources

We already discussed the documentation of programmes and other techni-

cal documents in section 3.2.5. Here we will look at other types of creations,

which can also be textual, but which aren't related to software, but rather to

scientific, technical and artistic fields.

10.1.1. Scientific articles

The way in which science evolves is, to a large extent, due to the fact that

the researchers that make it progress for the benefit of humanity publish the

results of their work in journals that reach a wide public. Thanks to this dis-

semination, researchers develop a track record that allows them to progress

towards positions of higher standing and responsibility, whilst they receive

income from research contracts that they obtain thanks to their developing

prestige.

This way of disseminating articles represents a business model that has proved

very fruitful. For this model to work, the quality of the work has to be gua-

ranteed and the articles must be widely disseminated. The obstacle that pre-

vents the dissemination is the large amount of existing journals, of a signifi-

cant cost, which can only be purchased with generous budgets. The quality is

guaranteed by the fact that the articles are reviewed by specialists or peers.

© FUOC • P07/M2101/02709 179 Free Software

In relation to this, numerous online journals have emerged, among which we

would mention the veteran First Monday ("First Monday: peer reviewed jour-

nal on the Internet") [26] or the Public Library Of Science project (PLOS http://

www.publiclibraryofscience.org [55]). The "Directory of Open Access Journals"

[22] cites many more. Should persons other than the authors be allowed to

publish modifications to these types of articles? There are objections that ran-

ge from the possibility of substandard quality or equivocation of opinions or

results, to the danger of people that can easily plagiarise the articles and rise in

the ranks with no effort, whilst denying the true authors of their hard-earned

merits. However, the fact that all writers are under the obligation of citing the

original author and of submitting the article to a peer-review for publication

in a prestigious journal can offset these problems (see section 10.2.2).

An analogy has been established between free software and science, as the

development model of the former requires the greatest amount of dissemina-

tion, peer-reviews (presumably experts) and the reuse of results ("Free softwa-

re/free science", 2001) [154].

10.1.2. Laws and standards.

There are documents of a regulatory nature that define how things must be

done, so as to improve coexistence between people or so that programmes

or machines can operate together. These documents need to be widely disse-

minated, which means that any obstacles will be counterproductive. For this

reason, it is understandable that they receive special treatment, as exemplified

in the Spanish Intellectual Property Act:

"Legal or regulatory provisions and drafts thereof, judgements of jurisdictional bodies
and acts, agreements, deliberations and rulings of public bodies, and official translations
of all such texts, shall not be the subject of intellectual property".

The technological equivalent of these laws would be the norms or standards.

In programming, the communications protocols, either between remote mac-

hines or between modules in the same machine, are especially important. It

is obvious that we should not limit their dissemination, especially if we want

free programmes that operate with others to flourish, but, despite this, tradi-

tionally, the bodies that regulate these matters, such as ISO11 and ITU12, sell

their regulations and standards, even in electronic formats, and prohibit their

redistribution. Although this can be justified to an extent, claiming the need

to cover part of the costs, the free dissemination of the standards has been

much more productive; this is the case of the W3C13 guidelines and, especially

where Internet standards are concerned, the documents called RFCs (request

for comments) that have existed since the beginning, in electronic formats that

can be read using any form of text editor.

(11)International Organization for
Standardization

(12)International Telecommunicati-
ons Union

(13)World Wide Web Consortium

© FUOC • P07/M2101/02709 180 Free Software

However, the success of the Internet protocols is not due solely to their avai-

lability. Other factors include the development model, which is very similar to

free software due to its openness to the participation of any interested person

and the use of mailing lists and similar elements. This process is described in

"The Internet standards process - revision 3" [94] and "GNU make" [36].

Should modifying the texts of laws and regulations be allowed? Obviously not

if it leads to confusion. For example, an RFC should only be modified in order

to explain it or add clarifying comments, whereas not even this is allowed wit-

hout an explicit authorisation for the recommendations of the W3C (http:/

/www.w3.org/Consortium/Legal/2002/copyright-documents-20021231) [65].

The licenses themselves are also legal documents that cannot be modified.

Should it be possible to create new regulations derived from other existing

ones using the original documents? This would probably lead to the effortless

spread of similar and incompatible regulations that would create confusion

and could help the companies that dominate the market to promote their

own incompatible variations, as is in fact occurring, especially in the sphere

of the Internet. Nevertheless, where state legislation is concerned, very often

the laws have been copied literally from those of other countries and adapted

with small modifications to the local particularities.

Is there a business model for laws and regulations? There are numerous pro-

fessionals that work on the laws, in charge of designing, interpreting and en-

forcing them (legislators, lawyers, solicitors, judges, etc). There are laboratories

that provide compliance certificates for the regulations. The regulatory bodies

subsist, or should subsist, on the contributions of their members who wish to

promote standards, for example, because their business is based on products

that interoperate.

In the same way that it is convenient to have a definition of free software or

open software, it is also necessary to have a working definition of open standards

. Bruce Perens (http://perens.org/OpenStandards) [15] proposed the following

definition based on the following principles:

1) Availability: if possible, open standards must be available for all to read

and implement.

2) Maximise end user choice.

3) Open standards must be free for all to implement with no royalty or fee

(certifications of compliance may involve a fee, although Bruce Perens

advises that there should be free self-certification tools available).

4) No discrimination to favour one implementer over another.

5) Extension or subset permissions (non-certifiable).

http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231
http://perens.org/OpenStandards

© FUOC • P07/M2101/02709 181 Free Software

6) Avoidance of predatory practices by dominant manufacturers. All propri-

etary subsets must have an open standard implementation.

10.1.3. Encyclopaedias

In 1999, Richard Stallman proposed the idea of a free encyclopaedia ("The free

universal encyclopaedia and learning resource", 2001) [210] as a mechanism

for avoiding the appropriation of knowledge and providing universal access to

learning and the associated documents. It would consist of articles provided

by the community, with no centralised control, where different actors would

undertake different tasks, including, as a recommendation but not an obliga-

tion, that of revising or checking the articles. This encyclopaedia would not

only contain text but also multimedia and free educational software.

Various initiatives have emerged to make this a reality. For instance, Nupedia

(http://www.nupedia.com) [178] tried to build a quality encyclopaedia, but

the attempt failed, perhaps because it required a format that was relatively

difficult to learn (TEI), although probably more because of the requirement of

having all the articles edited, revised by scientists and checked for style, etc.

The successor to Nupedia, which was much more successful, was Wikipedia

(http://www.wikipedia.org) [69]. Wikipedia is a free multilingual encyclopae-

dia based on wiki technology. Wikipedia is written cooperatively by volunte-

ers and the vast majority of articles can be modified by anyone with a web

browser. Its success is based on its structure, which is more flexible in terms of

editing, which eliminates the obstacles that Nupedia had in place and which

makes it closer to what Stallman had in mind. The word wiki comes from the

Hawaiian wiki wiki ('quick). Wiki technology allows anyone to edit any docu-

ment using the structured text system, which is extraordinarily simple as we

saw in section 8.6.2. In February 2007, the number of articles in English in

Wikipedia was more than 1,500,000 and there are upwards of 200,000 articles

in Spanish.

http://www.nupedia.com/
http://www.wikipedia.org/

© FUOC • P07/M2101/02709 182 Free Software

Note

Wikipedia is a project by the non-profit organisation Wikimedia, which also has the
following projects, based on the same model as Wikipedia:

• Wiktionary (http://www.wiktionary.org) [66]. This is a cooperative project that aims
to create a free multilingual dictionary, with definitions, etymologies and pronunci-
ations, in the required languages.

• Wikibooks (http://www.wikibooks.org/) [67]. This is a project that aims to provide
textbooks, manuals, tutorials or other pedagogic texts to anyone requiring these ele-
ments, for free.

• Wikiquote (http://www.wikiquote.org) [70]. It is a compilation of famous phrases in
all languages, which includes the sources when these are known.

• Wikisource. It is a library of original texts that are in the public domain or that have
been published with a GFDL (GNU free documentation license).

• Wikispecies (http://species.wikimedia.org/) [71]. It is an open repertory of animal
species, vegetable species, fungi, bacteria and all forms of known life.

• Wikinoticias (http://wikinews.org/) [68]. It is a source of free news content in which
the users are the editors.

• Commons (http://commons.wikimedia.org/) [19]. It is a free repository of images
and multimedia content.

• Wikiversidad (http://wikiversity.org/) [72]. It is an open and free educational plat-
form, based on teaching projects at all educational levels.

• Meta-Wiki (http://meta.wikimedia.org/) [48]. It is the website that supports all the
projects of the Wikimedia Foundation.

We should also mention the Concise Encyclopedia of Mathematics, which has a

more limited concept of what free means (it can only be consulted on Internet)

and a development model in which it is necessary to submit all contributions

to an editorial committee before publication.

10.1.4. Courses

With the same aim as the encyclopaedias, it is possible to produce free teac-

hing materials, such as notes, transparent copies, exercises, books, planners or

didactic software. There is a tendency to view universities as businesses that

produce and sell knowledge, which contradicts the basic principles. The rea-

sons why a university may make these materials available to all are as follows:

• The fulfilment of its mission, as an agent that disseminates knowledge.

• The low cost of making materials that exist throughout the world availa-

ble.

• The fact that these materials cannot replace teaching in person.

• The idea of these materials as publicity that can attract students and con-

tribute to the university's prestige.

http://www.wiktionary.org/
http://www.wikibooks.org/
http://www.wikiquote.org/
http://species.wikimedia.org/
http://wikinews.org/
http://commons.wikimedia.org/
http://wikiversity.org/
http://meta.wikimedia.org/

© FUOC • P07/M2101/02709 183 Free Software

• The possibility of creating a community of teachers that revise and impro-

ve the materials.

The most prominent initiative in this area is that of the MIT (http://

ocw.mit.edu) [174], which has the aim of making more than two thousand

well-catalogued resources accessible in a coherent and uniform manner.

10.1.5. Collections and databases

The mere compilation of information following determined criteria, organi-

sing it and making it available is, in itself, a product of valuable informati-

on, regardless of the information itself, which is therefore the product of its

authors and, consequently, subject to restrictions on the freedom to access,

modify or redistribute the content. Therefore, if we want free information, we

can also want free collections.

For example, we can wish to classify the important information on the Inter-

net, organising and commenting on the links. This is what the ODP (Open

Directory Project http://dmoz.org [109]) does; it operates Netscape and main-

tains voluntary editors organised according to a hierarchical structure. The full

directory can be freely copied in RDF format and published with certain mo-

difications, as does Google and many other search engines that take advanta-

ge of it. Netscape, which owns the directory, guarantees an "Open Directory

Project social contract"[53] inspired on that of the Debian distribution (http:/

/www.debian.org/social_contract.html) [106], which facilitates external con-

tributions ensuring that the Open Directory Project will always be free, with

public policies, self-regulated by the community and the users as the first pri-

ority.

Other examples of collections that might interest us are the free software dis-

tributions, with the programmes modified so that they fit together perfectly

and are precompiled so that they can run easily.

10.1.6. Hardware

There are two main aspects involved in freedom as regards to hardware. The

first one is the need for the interfaces and instruction sets to be free, in such

a way that anyone can create a device handler or a compiler for an architec-

ture. The second point is that there should sufficient information and power

available for reproducing a hardware design, modifying it and combining it

with others. The designs can be considered software in an appropriate lan-

guage (VHDL, Verilog, etc). However, making them work is not easy, as they

have to be manufactured, which is expensive and slow. However, there are

initiatives in this sense, among which we could mention OpenCores (http://

www.opencores.org) [52], for integrated circuits.

http://ocw.mit.edu/
http://ocw.mit.edu/
http://www.debian.org/social_contract.html
http://www.debian.org/social_contract.html
http://www.opencores.org/
http://www.opencores.org/

© FUOC • P07/M2101/02709 184 Free Software

10.1.7. Literature and art

To finish off our examination of free resources, we cannot forget art and lite-

rature, whose ultimate objective is not as much utilitarian as it is aesthetical.

What reasons might an artist have to give people the freedom to copy, mo-

dify or redistribute their work? On the one hand, it can help to make them

well-known and favour the dissemination of their work, which allows them to

obtain income from other activities, such as concerts or commissions, and on

the other, it can promote experimentation and creativity. In art, we have the

same circumstances as in technical subjects. Innovation is incremental and

it is sometimes difficult to distinguish between plagiarism and a work that is

representative or follows an artistic movement or trend.

Obviously, creation and interpretation are not the same thing, and neither

are music and literature. Music, painting, photography and cinema are very

similar to programmes, in the sense that they can be made to "work" immedi-

ately on a computer, whereas the same does not apply to sculpture, for exam-

ple. There are not many open source initiatives in art and literature and the

ones that exist are very diverse. We could mention the novels by the Wu Ming

(http://www.wumingfoundation.com) [29] collective.

10.2. Licenses for other free resources

The licenses for free software have been a source of inspiration for other in-

tellectual resources, in such a way that many of them have been adopted di-

rectly, especially where documentation is concerned, and on other occasions,

they have been adapted slightly, as occurs with the pioneering Open Audio Li-

cense (http://www.eff.org/IP/Open_licenses/eff_oal.html) [114]. Most of these

licenses are copyleft licenses, if they permit derived works.

GNU's free documentation license (see section 10.2.1) has been used and is

often used for all kinds of texts, although the Creative Commons licenses (see

section 10.2.2) are gradually being accepted.

In fact, programme licenses (GPL and LGPL) have even been used for hardwa-

re, although this subject is complex and difficult to reconcile with the current

law. In effect, the designs and diagrams can be used, without physically being

copied, to extract ideas that are used for new closed designs. For example, the

OpenIPCore Hardware General Public License ("OpenIPCore hardware general

public license") [155] establishes that this appropriation is not permitted, but

the legal validity of the document is questionable [209]. The only possible way

of protecting these ideas is using some form of free patent, which is something

that has not yet developed and is out of the reach of those that do not intend

or are unable to establish a business built on the ideas.

http://www.wumingfoundation.com/
http://www.eff.org/IP/Open_licenses/eff_oal.html

© FUOC • P07/M2101/02709 185 Free Software

10.2.1. GNU free documentation license

One of the most well-known copyleft licenses for technical documentation,

whether it corresponds to programmes or any other matter, is that of the Free

Software Foundation. After realising that a document is not the same as a pro-

gramme, Richard Stallman promoted a license for the documents that went

with the programmes and for other documents of a technical or didactic na-

ture.

In order to smooth the development of the derived versions, a transparent copy

of the document must be made available to whoever needs it, as explained in

section 3.2.5, as well as the opaque copies, in an analogy between the source

codes and the objects of the programmes.

One of the reasons for having a license is to establish authorship and to ensure

that the ideas or opinions expressed by the author are not mischaracterised.

This is why the derived works must have a title on the cover different to that

of the previous versions (unless express permission has been given) and must

expressly state the place where the original can be obtained. The names of

the main authors of the original documents must also be listed, as well as the

names of the people that have made any of the modifications, and all notes on

intellectual property must be preserved. Likewise, any acknowledgements and

dedications must be preserved and the history section, if there is one, must

be respected when new modifications are added. It is even possible, and this

is the aspect of the license that has most been criticised, to name invariant

sections and cover texts, which no one can modify or eliminate, although the

license only permits non-technical texts to be considered as invariant sections,

which the license refers to as secondary sections.

This license has created a lot of controversy in the free software world, to the

point that the Debian distribution project is currently (at the time of publica-

tion of this book) discussing whether to eliminate the license or designate all

documents that have the license as not free and consider them as non-official.

Even though there are no invariant sections, because the derived works may

be subject to the terms of the same license, it is important to remember that

they could be added subsequently. It is argued, for example, that there may

be incorrect or obsolete invariant sections, which, nevertheless, have to be

preserved. In any case, the license is incompatible with Debian's free softwa-

re guidelines (http://www.debian.org/social_contract.html#guidelines) [104],

but the question hinges perhaps on whether the documentation must follow

these guidelines (for example, the texts of the licenses cannot be modified

either).

Advice

The first versions of this
text were covered under the
GFDL license, but the aut-
hors subsequently decided
to use a Creative Commons
license (see section 10.2.2),
which is more appropriate
for the characteristics of a
book.

http://www.debian.org/social_contract.html

© FUOC • P07/M2101/02709 186 Free Software

10.2.2. Creative Commons licenses

Creative Commons (http://creativecommons.org) [21] is a non-profit organi-

sation that was founded in 2001 by experts in intellectual property and law in

the information society, with the aim of fostering the creation, conservation

and accessibility of intellectual resources ceded to the community in nume-

rous ways. It is based on the idea that some people may not wish to make use

of all the intellectual property rights that the law affords them, as this could

impede their wide distribution.

The first Creative Commons licenses for creative works, of which there we-

re various versions, originally came about in late 2002. These licenses were

designed to be:

• strong enough to withstand a court's scrutiny, in various different coun-

tries;

• simple enough for non-lawyers to use;

• sophisticated enough to be identified by various web applications.

The different licenses allow the creator to select what types of freedoms are

allowed, apart from copying, in accordance with four points:

In version 1.x of the Creative Commons licenses, there were eleven types of

license, which combined the four basic characteristics mentioned above. 98%

of the authors chose the "attribution" option; consequently, as of version 2.x

of the Creative Commons licenses, attribution is a requirement. This reduces

the eleven types of license to six, which are as follows:

http://creativecommons.org/

© FUOC • P07/M2101/02709 187 Free Software

The following table shows a schematic of the licenses with the corresponding

icons. This icon is usually a link to a summary of the license, hosted at [21].

It is possible to use the generic icon14 instead of the icon representing the

license, but it must be linked to the license chosen by the author. The HTML

code of the link to the license may be obtained from Creative Commons [21].

Once the license has been chosen and the corresponding icon added, the work

will have been licensed and you will receive the:

• Commons deed. A summary of the license with the relevant icons for the

license. This summary will be shown when clicking on the link obtained

from Creative Commons [21].

• Legal Code. This is the complete legal text and fine print on which the

license is based. This text may be accessed from the summary mentioned

above.

• Digital code. This is the RDF (resource description framework) description,

which search engines and other applications use to identify the license for

the works and the terms of use.

In February 2007, version 3.0 of the Creative Commons licenses was publis-

hed. This is an update that corrects many of the faults that people identified.

The first large modification is that the generic license is no longer based on

the US model and is now based on the terminology of the Berne Conventi-

on. Secondly, moral rights and the management society are mentioned speci-

(14)

© FUOC • P07/M2101/02709 188 Free Software

fically, as different rulings had been made in each jurisdiction. Thirdly and

finally, the texts of both the commons deed and the legal code that went with

each license were modified to make it clear that the clause on the recognition

of authorship does not allow the licensee to imply or give the impression that

they have a relationship or are associated in any way with the licensor.

In addition, Creative Commons provides other types of licenses for specific

applications. Such as:

Not all Creative Commons licenses are considered free by sectors linked to

free software, as the four essential freedoms must apply before licenses are

defined as such (see section 1.1.1) Benjamin "Mako" Hill (Debian and Ubuntu

developer) created the Freedomdefined.org (http://freedomdefined.org/) [28]

website, with the aim of providing a better definition of what is free culture

and what is not. On this bases, of the six basic Creative Commons licenses,

only two are strictly free: attribution alone (BY) and attribution-share-alike

(BY-SA), the latter of which also has copyleft.

http://freedomdefined.org/

© FUOC • P07/M2101/02709 189 Free Software

Bibliography

[1] Aap Project: http://www.a-a-p.org

[2] Ada Core Technologies: http://www.gnat.com/

[3] Alcôve: http://www.alcove.com

[4] Alcôve-Labs: http://www.alcove-labs.org

[5] Alioth: http://alioth.debian.org

[6] Anjuta: http://www.anjuta.org

[7] The Apache Ant Project: http://ant.apache.org

[8] Arch Revision Control System: http://www.gnu.org/software/gnu-arch/

[9] artofcode LLC: http://artofcode.com/

[10] Autoconf: http://www.gnu.org/software/autoconf

[11] Barrapunto: http://barrapunto.com

[12] Bazaar GPL Distributed Version Control Software: http://bazaar-vcs.org/

[13] Berlios. The Open Source Mediator: http://berlios.de

[14] Bitkeeper Source Management: http://www.bitkeeper.com

[15] Bruce Perens: http://perens.com/OpenStandards/Definition.html

[16] Caldera: http://www.sco.com

[17] Cisco Enterprise Print System: http://ceps.sourceforge.net/

[18] Code::blocks: http://www.codeblocks.org

[19] Commons: http://commons.wikimedia.org/

[20] Concurrent Version System: http://ximbiot.com/cvs/

[21] Creative Commons. http://creativecommons.org

[22] Directory of Open Access Journals: http://www.doaj.org

[23] Eclipse - An Open Development Platform: http://www.eclipse.org

[24] eCos: http://sources.redhat.com/ecos/

[25] eCos license 2.0: http://www.gnu.org/licenses/ecos-license.html

[26] First Monday. Peer Rewiewed Journal on the Internet: http://firstmonday.org

[27] Free Software Foundation: http://www.fsf.org

[28] Freedom Defined (Free Cultural Works): http://freedomdefined.org/

[29] Fundación Wu Ming: http://www.wumingfoundation.com

[30] GForge: http://gforge.org

[31] Gettext: http://www.gnu.org/software/gettext

[32] GNU Automake: http://www.gnu.org/software/automake

[33] GNU Emacs: http://www.gnu.org/software/emacs/

[34] GNU Libc: http://www.gnu.org/software/libc

[35] GNU Libtool: http://www.gnu.org/software/libtool

http://www.a-a-p.org/
http://www.gnat.com/
http://www.alcove.com/
http://www.alcove-labs.org/
http://alioth.debian.org/
http://www.anjuta.org/
http://ant.apache.org/
http://www.gnu.org/software/gnu-arch/
http://artofcode.com/
http://www.gnu.org/software/autoconf
http://bazaar-vcs.org/
http://berlios.de/
http://www.bitkeeper.com
http://perens.com/OpenStandards/Definition.html
http://www.sco.com/
http://ceps.sourceforge.net/
http://www.codeblocks.org/
http://commons.wikimedia.org/
http://ximbiot.com/cvs/
http://creativecommons.org/
http://www.doaj.org/
http://www.eclipse.org/
http://sources.redhat.com/ecos/
http://www.gnu.org/licenses/ecos-license.html
http://firstmonday.org/
http://www.fsf.org/
http://freedomdefined.org/
http://www.wumingfoundation.com/
http://gforge.org/
http://www.gnu.org/software/gettext
http://www.gnu.org/software/automake
http://www.gnu.org/software/emacs/
http://www.gnu.org/software/libc
http://www.gnu.org/software/libtool

© FUOC • P07/M2101/02709 190 Free Software

[36] GNU Make: http://www.gnu.org/software/make/make.html

[37] GNU Troff: http://www.gnu.org/software/groff/groff.html

[38] "Have you seen these hackers?": http://www.mozilla.org/MPL/missing.html

[39] "History of TeX": http://www.math.utah.edu/software/plot79/tex/history.html

[40] IBM Public License Version 1.0: http://opensource.org/licesenses/ibmpl.php

[41] Jam Product Information: http://www.perforce.com/jam/jam.html

[42] KDevelop: http://www.kdevelop.org

[43] Launchpad: https://launchpad.net

[44] The Linux Documentation Project: http://www.tldp.org

[45] LinuxCare: http://www.levanta.com

[46] Mailman, the GNU Mailing List Manager: http://www.list.org

[47] The Malone Bug Tracker: https://launchpad.net/products/malone

[48] Metawiki: http://meta.wikimedia.org/

[49] Mozilla Public License 1.1: http://www.mozilla.org/MPL/MPL-1.1.html

[50] Mozilla Tinderbox: http://www.mozilla.org/tinderbox.html

[51] NetBeans: http://www.netbeans.org

[52] Open Cores: http://www.opencores.org

[53] Open Directory Project Social Contract:

[54] Open Source Initiative: http://www.opensource.org

[55] Public Library of Science: http://www.publiclibraryofscience.org

[56] Red Hat: http://www.redhat.com

[57] Savannah: http://savannah.gnu.org and http://savannah.nongnu.org

[58] Slashdot: News for Nerds. http://slashdot.org

[59] Sleepycat License: http://www.sleepycat.com/download/oslicense.html

[60] Sleepycat Software: http://www.sleepycat.com/

[61] SourceForge: Open Source Software Development Website: http://sourceforge.net

[62] Subversion: http://subversion.tigris.org

[63] Texinfo - The GNU Documentation System:

[64] Tigris.org: Open Source Software Engineering: http://tigris.org

[65] W3c Document License:

http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231

[66] Wiktionary: http://www.wiktionary.org

[67] Wikibooks: http://www.wikibooks.org/

[68] Wikinews: http://wikinews.org/

[69] Wikipedia: http://www.wikipedia.org

[70] Wikiquote: http://www.wikiquote.org

http://www.gnu.org/software/make/make.html
http://www.gnu.org/software/groff/groff.html
http://www.mozilla.org/MPL/missing.html
http://www.math.utah.edu/software/plot79/tex/history.html
http://opensource.org/licesenses/ibmpl.php
http://www.perforce.com/jam/jam.html
http://www.kdevelop.org/
https://launchpad.net
http://www.tldp.org/
http://www.levanta.com/
http://www.list.org/
https://launchpad.net/products/malone
http://meta.wikimedia.org/
http://www.mozilla.org/MPL/MPL-1.1.html
http://www.mozilla.org/tinderbox.html
http://www.netbeans.org/
http://www.opencores.org/
http://www.opensource.org/
http://www.publiclibraryofscience.org/
http://www.redhat.com/
http://savannah.gnu.org/
http://savannah.nongnu.org/
http://slashdot.org/
http://www.sleepycat.com/download/oslicense.html
http://www.sleepycat.com/
http://sourceforge.net/
http://subversion.tigris.org/
http://tigris.org/
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231
http://www.wiktionary.org/
http://www.wikibooks.org/
http://wikinews.org/
http://www.wikipedia.org/
http://www.wikiquote.org/

© FUOC • P07/M2101/02709 191 Free Software

[71] Wikispecies: http://species.wikimedia.org/

[72] Wikiversity: http://wikiversity.org/

[73] X Window System Release 11 License: http://www.x.org/Downloads_terms.html

[74] Ximian: http://www.novell.com/linux/ximian.html

[75] Zope Corporation: http://www.zope.com/

[76] Zope Public License 2.0: http://www.zope.org/Resources/ZPL

[77] Law on Intellectual Property. Royal Legislative Decree 1/1996, of 12th April (April 1996):

[78] Affero General Public License, 2002: http://www.affero.org/oagpl.html

[79] Law on Intellectual Property. Law 23/2006, of 7th July (July 2006):

[80] Flossimpact Study. Technical Report, European Comission, 2007: http://flossimpact.eu

[81] ISO JTC 1/SC 34. Standard Generalized Markup Language (SGML, ISO 8879), 1986:

[82] Antoniades, I.; Samoladas, I.; Stamelos, I.; Bleris, G. L. "Dynamical simulation
models of the open source development process" En: Koch [157].

http://wwwai.wu-wien.ac.at/~koch/oss-book/

[83] Bailey, E. C. (1998). Maximum RPM. Taking the Red Hat package manager to the limit.
http://rikers.org/rpmbook/

[84] González Barahona, J. M. (2000). "Software libre, monopolios y otras yerbas". Todo
Linux (3). http://sinetgy.org/~jgb/articulos/soft-libre-monopolios/

[85] González Barahona, J. M. (2002). "¿Qué se hace con mi dinero?". Todo Linux (17).

http://sinetgy.org/~jgb/articulos/sobre-administracion/

[86] González Barahona, J. M.; Robles, G. Libre Software Engineering Web Site.

http://libresoft.dat.escet.urjc.es/

[87] González Barahona, J. M.; Robles, G. (2003, mayo). "Unmounting the code god
assumption". En: Proceedings of the Fourth International Conference on eXtreme Programming and
Agile Processes in Software Engineering. Génova, Italia.

[88] González Barahona, J. M.; Robles, G.; Ortuño Pérez, M. A.; Rodero Merino,
L.; Centeno González, J.; Matellán Olivera, V.; Castro Barbero, E. M.; De las Heras
Quirós; P. "Anatomy of two GNU/Linux distributions". En: Koch [157].

http://wwwai.wu-wien.ac.at/~koch/oss-book/

[89] Barnson, M. P.The Bugzilla guide.

http://www.bugzilla.org/docs214/html/index.html

[90] Baudis, P. "Cogito manual page".

http://www.kernel.org/pub/software/scm/cogito/docs/

[91] Bezroukov, N. (1998, diciembre). "A second look at the cathedral and the bazaar". First
Monday, 4(12).

http://www.firstmonday.org/issues/issue4_12/bezroukov/index.html

[92] Bodnar, L. (2003). "Linux distributions. Facts and figures".

http://www.distrowatch.com/stats.php?section=packagemanagement

[93] Boehm, B. W. (1981). Software Engineering Economics. Prentice Hall.

http://species.wikimedia.org/
http://wikiversity.org/
http://www.x.org/Downloads_terms.html
http://www.novell.com/linux/ximian.html
http://www.zope.com/
http://www.zope.org/Resources/ZPL
http://www.affero.org/oagpl.html
http://flossimpact.eu/
http://wwwai.wu-wien.ac.at/~koch/oss-book/
http://rikers.org/rpmbook/
http://sinetgy.org/~jgb/articulos/soft-libre-monopolios/
http://sinetgy.org/~jgb/articulos/sobre-administracion/
http://libresoft.dat.escet.urjc.es/
http://wwwai.wu-wien.ac.at/~koch/oss-book/
http://www.bugzilla.org/docs214/html/index.html
http://www.kernel.org/pub/software/scm/cogito/docs/
http://www.firstmonday.org/issues/issue4_12/bezroukov/index.html
http://www.distrowatch.com/stats.php?section=packagemanagement

© FUOC • P07/M2101/02709 192 Free Software

[94] Bradner, S. (1996, octubre). "The Internet standards process. Revision 3 (rfc 2026, bcp
9)".

http://www.ietf.org/rfc/rfc2026.txt

[95] Cederqvist, P.; GNU (1993). "CVS - concurrent versions system". http://www.gnu.org/
manual/cvs/index.html

[96] Collins-Sussman, B.; Fitzpatrick; B. W.; Pilato, C. M. (2004). Version control with
Subversion. O'Reilly & Associates (http://www.ora.com).

http://svnbook.red-bean.com/

[97] Cunningham, W. "Wiki design principles".

[98] Dachary, L. (2001). "Savannah, the next generation".

http://savannah.gnu.org/docs/savannah-plan.html

[99] Autonomous Government of Andalucía (2003, March). Decree 72/2003, of 18th
March, on Measures to Promote the Knowledge Society in Andalucía.

http://www.andaluciajunta.es/SP/AJ/CDA/Ficheros/ArchivosPdf/DecretoConocimiento.pdf

[100] De Boor, A.Pmake. A tutorial. http://docs.freebsd.org/44doc/psd/12.make/paper.html

[101] De Icaza, M. "The story of the GNOME Project".

http://primates.ximian.com/~miguel/gnome-history.html

[102] Senate of the Republic of France. Forum sur la proposition de loi tendant à géné-
raliser dans

l'administration l'usage d'Internet et de logiciels libres.

http://www.senat.fr/consult/loglibre/index.htm

[103] De las Heras Quirós, P.; González Barahona, J. M. (2000). "Iniciativas de las
administraciones públicas en relación al software libre". Bole. TIC, ASTIC magazine (14).

[104] Debian. "Debian free software guidelines".

http://www.debian.org/social_contract.html#guidelines

[105] Debian.Debian policy manual.

http://www.debian.org/doc/debian-policy/

[106] Debian. "Debian social contract".

http://www.debian.org/social_contract.html

[107] Schriftenreihe der KBSt (2003, July). Leitfaden für die migration von basissoftwa-
rekomponenten auf serverund arbeitsplatzsystemen. Technical report, Koordinierungs-und
Beratungsstelle der Bundesregierung für Informationstechnik in der Bundesverwaltung
(KBSt).

http://www.kbst.bund.de/download/mlf_v1_de.pdf

[108] DiBona, C.; Ockman, S.; Stone, M. (ed.) (1999). Open sources. Voices from the open
source revolution. O'Reilly & Associates.

http://www.oreilly.com/catalog/opensource/

[109] Open Directory Project. http://dmoz.org

[110] Ehrenkrantz, J. R. (2003, May). "Release management within open source projects".
In: Proceedings of the 3rd Workshop on Open Source Software Engineering at the 25th International
Conference on Software Engineering.Portland, USA

http://www.ietf.org/rfc/rfc2026.txt
http://www.gnu.org/manual/cvs/index.html
http://www.gnu.org/manual/cvs/index.html
http://www.ora.com/
http://svnbook.red-bean.com/
http://savannah.gnu.org/docs/savannah-plan.html
http://www.andaluciajunta.es/SP/AJ/CDA/Ficheros/ArchivosPdf/DecretoConocimiento.pdf
http://docs.freebsd.org/44doc/psd/12.make/paper.html
http://primates.ximian.com/~miguel/gnome-history.html
http://www.senat.fr/consult/loglibre/index.htm
http://www.debian.org/social_contract.html
http://www.debian.org/doc/debian-policy/
http://www.debian.org/social_contract.html
http://www.kbst.bund.de/download/mlf_v1_de.pdf
http://www.oreilly.com/catalog/opensources/
http://dmoz.org/

© FUOC • P07/M2101/02709 193 Free Software

[111] European Council (1991). Council Directive 91/250/CEE of 14th May 1991, on the
legal protection of computer programmes.

http://europa.eu.int/scadplus/leg/es/lvb/l26027.htm

[112] Feller, J.; Fitzgerald, B; Hissam, S.; Lakhani, K. (ed.) (2003). Making sense of the
bazaar. O'Reilly.

[113] Fogel, K.; Bar, M. (2001). Open source code development with CVS (2nd edition). Para-
gliph Press.

http://cvsbook.red-bean.com

[114] Electronic Frontier Foundation. Open Audio.

http://www.eff.org/IP/Open_licenses/eff_oal.html

[115] Free Software Foundation. GPLv3.

http://gplv3.fsf.org

[116] Free Software Foundation. LGPLv3. First discussion draft.

http://gplv3.fsf.org/pipermail/info-gplv3/2006-July/000008.html

[117] Free Software Foundation (1985): "The GNU Manifesto".

http://www.gnu.org/philosophy/

[118] Free Software Foundation (1991, junio). GNU General Public License, version 2.
http://www.fsf.org/licenses/gpl.html

[119] Free Software Foundation (1999, February). GNU Lesser General Public License,
version 2.1.

http://www.fsf.org/licenses/lgpl.html

[120] Free Software Foundation. "Free software definition".

http://www.gnu.org/philosophy/free-sw.html

[121] Free Software Foundation. "Free licenses".

http://www.gnu.org/licenses/license-list.html

[122] Garbee, B.; Koptein, H.; Lohner, N.; Lowe, W.; Mitchell, B.; Murdock, I.;
Schulze, M.; Small, C. "A brief history of Debian". In the package: Debian-history.

[123] Germán, D. (2002, May). "The evolution of GNOME. In: Proceedings of the 2nd Works-
hop on Open Source Software Engineering at the 24th International Conference on Software Engine-
ering. Florida, USA

[124] Germán, D.; Mockus, A. (2003, May): "Automating the measurement of open source
projects". In: Proceedings of the 3rd Workshop on Open Source Software Engineering at the 25th
International Conference on Software Engineering. Portland, USA

[125] Ghosh, R. A. (1998, March). "Cooking pot markets: an economic model for the trade
in free goods and services on the Internet. First Monday, 3(3).

http://www.firstmonday.dk/issues/issue3_3/ghosh/index.html

[126] Ghosh, R. A.; Glott, R.; Krieger, B.; Robles, G. (2002). Free/libre and open source
software: Survey and study. Part iv: "Survey of developers".

http://www.infonomics.nl/FLOSS/report/FLOSS_Final4.pdf

[127] Ghosh, R. A.; Prakash, V. V. (2000, July). "The orbiten free software survey". First
Monday, 5(7).

http://www.firstmonday.dk/issues/issue5_7/ghosh/index.html

http://europa.eu.int/scadplus/leg/es/lvb/l26027.htm
http://cvsbook.red-bean.com/
http://www.eff.org/IP/Open_licenses/eff_oal.html
http://gplv3.fsf.org/
http://gplv3.fsf.org/pipermail/info-gplv3/2006-July/000008.html
http://www.gnu.org/philosophy/
http://www.fsf.org/licenses/gpl.html
http://www.fsf.org/licenses/lgpl.html
http://www.gnu.org/philosophy/free-sw.html
http://www.gnu.org/licenses/license-list.html
http://www.firstmonday.dk/issues/issue3_3/ghosh/index.html
http://www.infonomics.nl/FLOSS/report/FLOSS_Final4.pdf
http://www.firstmonday.dk/issues/issue5_7/ghosh/index.html

© FUOC • P07/M2101/02709 194 Free Software

[128] Godfrey, M. W.; Tu, Q. (2000, August). "Evolution in open source software. A case
study". In: Proceedings of the 2000 International Conference on Software Maintainance.

[129] González, J. A. (2002, March). "Carta al congresista Villanueva".

http://www.gnu.org. pe/mscarta.html

[130] Goosens, M.; Rahtz, S. (1999). The LaTeX Web Companion. Addison Wesley.

[131] Grad, B. (2002, January-March). "A personal recollection: IBM's unbundling of softwa-
re and services". In: IEEE Annals of the History of Computing, 24(1):64-71.

[132] Working Group on Libre Software (1999). "Free software / open source. Informa-
tion society opportunities for Europe?".

http://eu.conecta.it/paper.pdf

[133] GrULIC. "Legislation on the use of free software by the State ".

http://proposicion.org.ar/doc/referencias/index.html.es

[134] Hamerly, J; Paquin, T.; Walton, S. (1999). "Freeing the source. The story of Mozi-
lla". http://www.oreilly.com/catalog/opensources/book/netrev.html

[135] Hammel, M. J. (1991, December). "The history of xfree86". Linux Magazine.

http://www.linux-mag.com/2001-12/xfree86_01.html

[136] Harris, S. (2001, August). The Tao of IETF. A novice's guide to the Internet engineering
task force (RFC 3160, FYI 17).

http://www.ietf.org/rfc/rfc3160.txt

[137] Harrison, P. (2002). "The rational street performer protocol".

http://www.logarithmic.net/pfh/RSPP

[138] Hasan, R. "History of Linux".

http://ragib.hypermart.net/linux/

[139] Hauben, M.; Hauben, R. (1997). Netizens. On the history and impact of Usenet and the
Internet. IEEE Computer Society Press.

[140] Healy, K.; Schussman; A. (2003, January). "The ecology of open source software
development". http://opensource.mit.edu/papers/healyschussman.pdf

[141] Hecker, F. (1998, May). "Setting up shop. The business of open-source software".

http://www.hecker.org/writings/setting-up-shop.html

[142] Hecker, F. (1998). "Setting up shop. The business of open-source software".

http://www.hecker.org/writings/setting-up-shop.html

[143] Hertel, G.; Niedner, S.; Herrmann, S. (2003). "Motivation of software developers
in open

source projects. An Internet-based survey of contributors to the Linux kernel".

http://opensource.mit.edu/papers/rp-hertelniednerherrmann.pdf

[144] Himanen, P. (2001). The hacker ethic and the spirit of the information age. Random
House.

http://www.hackerethic.org

[145] Hunt, F.; Johnson, P. (2002). "On the Pareto distribution of SourceForge projects.
Technical report". Centre for Technology Management, Cambridge University Engineering
Department, Mill Lane, Cambridge CB2 1RX.

http://eu.conecta.it/paper.pdf
http://proposicion.org.ar/doc/referencias/index.html.es
http://www.oreilly.com/catalog/opensources/book/netrev.html
http://www.linux-mag.com/2001-12/xfree86_01.html
http://www.ietf.org/rfc/rfc3160.txt
http://www.logarithmic.net/pfh/RSPP
http://ragib.hypermart.net/linux/
http://opensource.mit.edu/papers/healyschussman.pdf
http://www.hecker.org/writings/setting-up-shop.html
http://www.hecker.org/writings/setting-up-shop.html
http://opensource.mit.edu/papers/rp-hertelniednerherrmann.pdf
http://www.hackerethic.org/

© FUOC • P07/M2101/02709 195 Free Software

http://www-mmd.eng.cam.ac.uk/people/fhh10/Sourceforge/Sourceforge%20paper.pdf

[146] Open Source Initiative. "History of the OSI".

http://www.opensource.org/docs/history.php

[147] Hamilton, J. R. (US ambassador to Peru) (2002, June). "Carta al presidente del Con-
greso de la República".

http://www.gnu.org.pe/lobbyusa-congreso.html

[148] Jones, P. (2000, May). "Brook's law and open source. The more the merrier?".

http://www-106.ibm.com/developerworks/opensource/library/os-
merrier.html?dwzone=opensource

[149] Jorgensen, N. "Incremental and decentralized integration in FreeBSD". In: Feller et al.
[112]. http://www.dat.ruc.dk/~nielsj/research/papers/bazaar-freebsd.pdf

[150] Brooks, F. P. (1975). The mythical man-month. Essays on software engineering. Addison-
Wesley.

[151] Kalt, C. (2000, April). "Internet relay chat: architecture (RFC 2810)".

http://www.ietf.org/rfc/rfc2810.txt

[152] Kelsey, J.; Schneier, B. (1998, November). "The street performer protocol". In: Third
USENIX Workshop on Electronic Commerce Proceedings. USENIX Press.

http://www.counterpane.com/street_performer.html

[153] Kelsey, J.; Schneier, B. (1999, June). "The street performer protocol and digital copy-
rights". First Monday, 4(6).

http://www.firstmonday.dk/issues/issue4_6/kelsey/

[154] Kelty, C. M. (2001, December). "Free software/free science". First Monday, 6(12).

http://firstmonday.org/issues/issue6_12/kelty/index.html

[155] Khatib, J. "OpenIPCore Hardware General Public License".

http://www.opencores.org/OIPC/OHGPL_17.shtml

[156] Knuth, D. (1989). The TeXbook. Addison Welsley.

[157] Koch, S. (ed.) (2003). Free/open source software development. Idea Group Inc.

http://wwwai.wu-wien.ac.at/~koch/oss-book/

[158] Koch, S.; Schneider, G. (2000). "Results from software engineering research into
open source development projects using public data". In: Diskussionspapiere zum Tätigkeitsfeld
Informationsverarbeitung und Informationswirtschaft, H.R. Hansen und W.H. Janko (Hrsg.), Nr.
22, WirtschaftsuniversitätWien.

[159] Kovács, G. L.; Drozdik, S.; Succi, G.; Zuliani, P. (2004). "Open source software
for the public administration". In: Proceedings of the 6th International Workshop on Computer
Science and Information Technologies (CIST 2004). Budapest, Hungary.

[160] Krishnamurthy, S. (2002, May). "Cave or community? An empirical examination of
100 mature open source projects". First Monday, 7(6).

http://www.firstmonday.dk/issues/issue7_6/krishnamurthy/index.html

[161] Laffitte; Trégouet; Cabanel (1999). Proposition de loi numéro 495. Senate of the
Republic of France.

http://www.senat.fr/consult/loglibre/texteloi.html

[162] Laffitte; Trégouet; Cabanel (2000). Proposition de loi numéro 117. Senate of the
Republic of France.

http://www-mmd.eng.cam.ac.uk/people/fhh10/Sourceforge/Sourceforge%20paper.pdf
http://www.opensource.org/docs/history.php
http://www.gnu.org.pe/lobbyusa-congreso.html
http://www-106.ibm.com/developerworks/opensource/library/os-merrier.html?dwzone=opensource
http://www-106.ibm.com/developerworks/opensource/library/os-merrier.html?dwzone=opensource
http://www.dat.ruc.dk/~nielsj/research/papers/bazaar-freebsd.pdf
http://www.ietf.org/rfc/rfc2810.txt
http://www.counterpane.com/street_performer.html
http://www.firstmonday.dk/issues/issue4_6/kelsey/
http://firstmonday.org/issues/issue6_12/kelty/index.html
http://www.opencores.org/OIPC/OHGPL_17.shtml
http://wwwai.wu-wien.ac.at/~koch/oss-book/
http://www.firstmonday.dk/issues/issue7_6/krishnamurthy/index.html
http://www.senat.fr/consult/loglibre/texteloi.html

© FUOC • P07/M2101/02709 196 Free Software

http://www.senat.fr/consult/loglibre/texteloi.html

[163] Lamport, L. (1994). LaTeX user's guide and reference manual (2nd edition). Addison
Welsley, Reading, Mass.

[164] Lancashire, D. (2001, December). "Code, culture and cash. The fading altruism of
open source development". First Monday, 6(12).

http://www.firstmonday.dk/issues/issue6_12/lancashire/index.html

[165] Lehman, M. M.; Ramil, J. F; Wernick, P. D. (1997, November). "Metrics and laws
of software evolution. The nineties view". In: Proceedings of the 4th International Symposium
on Software Metrics.

http://www.ece.utexas.edu/~perry/work/papers/feast1.pdf

[166] Leiner, B. M.; Cerf, V. G.; Kahn, R. E.; Clark, D. D.; Kleinrock, L.; Lynch,
D. C.; Postel, J.; Roberts, L. G.; Wolff, S. (1997). "A brief history of the Internet". In:
Communications of the ACM.

http://www.isoc.org/internet/history/brief.shtml

[167] Netcraft Ltd. August 2003 Web Server Survey, 2003.

http://news.netcraft.com/archives/2003/08/01/august_2003_web_server_survey.html

[168] Lucovsky, M. (2000). "From NT OS/2 to Windows 2000 and beyond. A software-en-
gineering odyssey".

http://www.usenix.org/events/usenix-win2000/invitedtalks/lucovsky_html/>

[169] McGraw, G. "Building secure software: how to avoid security problems the right way".
Cited by: David A. Wheeler in http://www.dwheeler.com/sloc/

[170] McKusick, M. K. (1999). "Twenty years of Berkeley Unix. From AT&T owned to freely
redistributable". In: DiBona et al. [108].

http://www.oreilly.com/catalog/opensources/

[171] SUN Microsystems (2000). "Sun microsystems announces availability of StarOffice
source code on OpenOffice.org".

http://www.collab.net/news/press/2000/openoffice_live.html

[172] Mockus, A.; Fielding, R. T.; Herbsleb, J. D. (2000, June). "A case study of open
source software development: the Apache server". In: Proceedings of the 22nd International
Conference on Software Engineering (ICSE 2000), pages 263272. Limerick, Ireland ACM Press.

[173] Molenaar, B. "What is the context of charityware?".

http://www.moolenaar.net/Charityware.html

[174] MT Open Course Ware.

http://ocw.mit.edu

[175] Nagel, L. W. (1996, september). "The life of SPICE". In: 1996 Bipolar Circuits and Tech-
nology Meeting. Minneapolis, MN, US

http://www.icsl.ucla.edu/aagroup/Life%20of%20SPICE.html

[176] Narduzzo, A.; Rossi, A. (2003, May). "Modularity in action: GNU/Linux and free/
open

source software development model unleashed".

http://opensource.mit.edu/papers/narduzzorossi.pdf

[177] Newman, N. (1999). "The origins and future of open source software".

http://www.netaction.org/opensrc/future/

http://www.senat.fr/consult/loglibre/texteloi.html
http://www.firstmonday.dk/issues/issue6_12/lancashire/index.html
http://www.ece.utexas.edu/~perry/work/papers/feast1.pdf
http://www.isoc.org/internet/history/brief.shtml
http://news.netcraft.com/archives/2003/08/01/august_2003_web_server_survey.html
http://www.usenix.org/events/usenix-win2000/invitedtalks/lucovsky_html/
http://www.dwheeler.com/sloc/
http://www.oreilly.com/catalog/opensources/
http://www.collab.net/news/press/2000/openoffice_live.html
http://www.moolenaar.net/Charityware.html
http://ocw.mit.edu/
http://www.icsl.ucla.edu/aagroup/Life%20of%20SPICE.html
http://opensource.mit.edu/papers/narduzzorossi.pdf
http://www.netaction.org/opensrc/future/

© FUOC • P07/M2101/02709 197 Free Software

[178] Nupedia.

http://www.nupedia.com

[179] Villanueva Núñez, E. (2002, April). "Letter to Microsoft Peru".

http://www.gnu.org.pe/rescon.html

[180] Danish Board of Technology (2002, October). "Open-source software in e-Govern-
ment, analysis and recommendations drawn up by a working group under the danish board
of technology. Technical report".

[181] Open Source Initiative. "Open source licenses ".

http://www.opensource.org/licenses/index.html

[182] Pareto, W. (1896). "Course of Political Economy". Lausanne.

[183] Perens, P.; The Open Source Initiative (1998). "The open source definition". http:/
/www.opensource.org/docs/definition_plain.html

[184] GNU Peru. "Proyectos ley de software libre en la Administración pública del Gobierno
peruano, Congreso de la República".

http://www.gnu.org.pe/proleyap.html

[185] Pinheiro, P. (1999, December). Proposição pl-2269/1999: Dispõe sobre a utilização de
programas abertos pelos entes de direito público e de direito privado sob controle acionário
da administração pública. Câmara dos Deputados do Brasil.

http://www.camara.gov.br/Internet/sileg/Prop_Detalhe.asp?id=17879

http://www.fenadados.org.br/software.htm

[186] Pranevich, J. (2003). "The wonderful world of Linux 2.6".

http://www.kniggit.net/wwol26.html

[187] The Debian Project. "Debian developer map".

http://www.debian.org/devel/developers.loc

[188] Puigcercós Boixassa, J. (2002). Draft Bill on Measures for Implementing Free Softwa-
re in Public Administration.

http://www.congreso.es/public_oficiales/L7/CONG/BOCG/B/B_244-01.PDF

[189] Quittner, J.; Slatalla, M. (1998). Speeding the net: the inside story of Netscape and how
it challenged Microsoft. Atlantic Monthly Pr.

[190] Rasch, C. "A brief history of free/open source software movement".

http://www.openknowledge.org/writing/open-source/scb/brief-open-source-history.html

[191] Rasch, C. (2001, May). "The Wall Street performer protocol. Using software completion
bonds to fund open source software development". First Monday, 6(6).

[192] Raymond, E. R. (2001, January). The cathedral and the bazaar. Musings on Linux and
open source by an accidental revolutionary. O'Reilly & Associates (http://www.ora.com).

http://catb.org/~esr/writings/cathedral-bazaar/

[193] Reis, C R.; De Mattos Fortes, R. P. (2002, February). "An overview of the software
engineering process and tools in the Mozilla Project".

http://opensource.mit.edu/papers/reismozilla.pdf

[194] Rideau, F. R. (2000). "Patents are an economic absurdity".

http://fare.tunes.org/articles/patents.html

http://www.nupedia.com/
http://www.gnu.org.pe/rescon.html
http://www.opensource.org/licenses/index.html
http://www.opensource.org/docs/definition_plain.html
http://www.opensource.org/docs/definition_plain.html
http://www.gnu.org.pe/proleyap.html
http://www.camara.gov.br/Internet/sileg/Prop_Detalhe.asp?id=17879
http://www.fenadados.org.br/software.htm
http://www.kniggit.net/wwol26.html
http://www.debian.org/devel/developers.loc
http://www.congreso.es/public_oficiales/L7/CONG/BOCG/B/B_244-01.PDF
http://www.openknowledge.org/writing/open-source/scb/brief-open-source-history.html
http://www.ora.com/
http://catb.org/~esr/writings/cathedral-bazaar/
http://opensource.mit.edu/papers/reismozilla.pdf
http://fare.tunes.org/articles/patents.html

© FUOC • P07/M2101/02709 198 Free Software

[195] Roberts, L. (1978, November). "The evolution of packet switching". Proceedings of the
IEEE, (66).

[196] Robles, G.; González Barahona, J. M.; Centeno González, J.; Matellán Olive-
ra, V.; Rodero Merino, L. (2003, May). "Studying the evolution of libre software projects
using publicly available data". In: Proceedings of the 3rd Workshop on Open Source Software En-
gineering at the 25th International Conference on Software Engineering. Portland, US.

[197] Robles, G.; Scheider, H.; Tretkowski, I.; Weber, N. (2001): "Who is doing it?
Knowing more about libre software developers".

http://widi.berlios.de/paper/study.pdf

[198] Rochkind, M. (1986, May). "Interview with Dick Haight". Unix Review.

[199] Scacchi, W. (2003). "Understanding open source software evolution. Applying, bre-
aking and rethinking the laws of software evolution".

http://www.ics.uci.edu/~wscacchi/Papers/New/Understanding-OSS-Evolution.pdf

[200] Schneier, B. (2000). "Software complexity and security".

http://www.counterpane.com/crypto-gram-0003.html

[201] Smoogen, S. J. "The truth behind Red Hat names".

http://www.smoogespace.com/documents/behind_the_names.html

[202] Haggen So. "Comparison of free/open source hosting (FOSPhost) sites available for
hosting projects externally from project owners".

http://www.ibiblio.org/fosphost/exhost.htm

[203] Stallman, R. "GNU coding standards".

http://www.gnu.org/prep/standards.html

[204] Stallman, R. "Why free software is better than open source".

http://www.fsf.org/philosophy/free-software-for-freedom.html

[205] Stallman, R. (1998). "Copyleft: pragmatic idealism".

http://www.gnu.org/philosophy/pragmatic.html

[206] Stallman, R. (1998). "Why free software is better than open source".

http://www.gnu.org/philosophy/free-software-for-freedom.html

[207] Stallman, R. (1998). "Why software should not have owners".

http://www.gnu.org/philosophy/why-free.html

[208] Stallman, R. "The GNU Project". In: DiBona et al. [108].

http://www.fsf.org/gnu/thegnuproject.html

[209] Stallman, R. (1999, June). "On free hardware". Linux Today.

http://features.linuxtoday.com/news_story.php3?ltsn=1999-06-22-005-05-NW-LF

[210] Stallman, R. (2001). "The free universal encyclopedia and learning resource".

http://www.gnu.org/encyclopedia/free-encyclopedia.html

[211] Stallman, R. (2002). Free software, free society. Selected essays of Richard M. Stallman.
Joshua Gay.

[212] Stallman, R. (2003). "Some confusing or loaded words and phrases that are worth
avoiding".

http://widi.berlios.de/paper/study.pdf
http://www.ics.uci.edu/~wscacchi/Papers/New/Understanding-OSS-Evolution.pdf
http://www.counterpane.com/crypto-gram-0003.html
http://www.smoogespace.com/documents/behind_the_names.html
http://www.ibiblio.org/fosphost/exhost.htm
http://www.gnu.org/prep/standards.html
http://www.fsf.org/philosophy/free-software-for-freedom.html
http://www.gnu.org/philosophy/pragmatic.html
http://www.gnu.org/philosophy/free-software-for-freedom.html
http://www.gnu.org/philosophy/why-free.html
http://www.fsf.org/gnu/thegnuproject.html
http://features.linuxtoday.com/news_story.php3?ltsn=1999-06-22-005-05-NW-LF
http://www.gnu.org/encyclopedia/free-encyclopedia.html

© FUOC • P07/M2101/02709 199 Free Software

http://www.gnu.org/philosophy/words-to-avoid.html

[213] Stoltz, M. (1999). "The case for government promotion of open source software".

http://www.netaction.org/opensrc/oss-report.html

[214] Tanenbaum, A.; Torvalds, L. (1999). "The Tanenbaum-Torvalds debate".

http://www.oreilly.com/catalog/opensources/book/appa.html

[215] The Open Source Initiative. "The open source definition".

http://www.opensource.org/docs/definition_plain.html

[216] Tiemann, M. "Future of Cygnus Solutions. An entrepreneur's account". In: DiBona
et al. [108].

http://www.oreilly.com/catalog/opensources/book/tiemans.html

[217] Torvalds, L; Diamond; D. (2001). Just for fun: the story of an accidental revolutionary.
Texere.

[218] Linus Torvalds, Hamano, J. C.; Ericsson, A. "Git manual page".

http://www.kernel.org/pub/software/scm/git/docs/

[219] Tuomi, I. (2002). "Evolution of the Linux credits file: methodological challenges and
reference data for open source research".

http://www.jrc.es/~tuomiil/articles/EvolutionOfTheLinuxCreditsFile.pdf

[220] Various authors. "Open letter to WIPO".

http://www.cptech.org/ip/wipo/kamil-idris-7july2003.pdf

[221] Vigo i Sallent, P.; Benach i Pascual, E.; Huguet i Biosca; J. (2002, May). Propo-
sició de llei de programari lliure en el marc de l'Administració pública de Catalunya.

http://www.parlament-cat.es/pdf/06b296.pdf

http://www.hispalinux.es/
modules.php?op=modload&name=Sections&file=index&req=viewarticle&artid=49

[222] Villanueva Núñez, E. (2001, December). Free software project bill, number 1609.

http://www.gnu.org.pe/proley1.html

[223] Villanueva Núñez, E.; Rodrich Ackerman, J. (2002, April). Bill on the use of free
software by the Public Administration, number 2485.

http://www.gnu.org.pe/proley4.html

[224] W3C (2000). Extensible markup language (xml) 1.0 (2nd edition).

[225] Walsh, N.; Muellner, L.; Stayton, B. (2002). DocBook: the definitive guide. O'Reilly.
http://docbook.org/tdg/en/html/docbook.html

[226] Welke, L; Johnson, L. (1998). How the ICP Directory began.

http://www.softwarehistory.org/history/Welke1.html

[227] Wheeler, D. A. (2000, July). "Estimating Linux's size".

http://www.dwheeler.com/sloc

[228] Wheeler, D. A. (2001, June). "More than a gigabuck: estimating GNU/Linux's".

http://www.dwheeler.com/sloc

[229] Wiesstein, E. "Concise encyclopedia of mathematics".

http://www.gnu.org/philosophy/words-to-avoid.html
http://www.netaction.org/opensrc/oss-report.html
http://www.oreilly.com/catalog/opensources/book/appa.html
http://www.opensource.org/docs/definition_plain.html
http://www.oreilly.com/catalog/opensources/book/tiemans.html
http://www.kernel.org/pub/software/scm/git/docs/
http://www.jrc.es/~tuomiil/articles/EvolutionOfTheLinuxCreditsFile.pdf
http://www.cptech.org/ip/wipo/kamil-idris-7july2003.pdf
http://www.parlament-cat.es/pdf/06b296.pdf
http://www.hispalinux.es/modules.php?op=modload&name=Sections&file=index&req=viewarticle&artid=49
http://www.hispalinux.es/modules.php?op=modload&name=Sections&file=index&req=viewarticle&artid=49
http://www.gnu.org.pe/proley1.html
http://www.gnu.org.pe/proley4.html
http://docbook.org/tdg/en/html/docbook.html
http://www.softwarehistory.org/history/Welke1.html
http://www.dwheeler.com/sloc
http://www.dwheeler.com/sloc

© FUOC • P07/M2101/02709 200 Free Software

http://mathworld.wolfram.com/

[230] Wikipedia. "Gini coefficient".

http://www.wikipedia.org/wiki/Gini_coefficient

[231] Wikipedia. "Lorenz curve".

http://www.wikipedia.org/wiki/Lorenz_curve

[232] Wikipedia. "Pareto".

http://www.wikipedia.org/wiki/Pareto

[233] Wikipedia. "TeX".

http://www.wikipedia.org/wiki/TeX

[234] Wilson, B. "Netscape Navigator".

http://www.blooberry.com/indexdot/history/netscape.htm

[235] Computer World (2000). "Salary survey 2000".

http://www.computerworld.com/cwi/careers/surveysandreports

[236] Young, R. (1999). "Giving it away. how Red Hat software stumbled across a new eco-
nomic model and helped improve an industry".

http://www.oreilly.com/catalog/opensources/book/young.html

[237] Zawinsky, J. W. (1999). "Resignation and postmortem".

http://www.jwz.org/gruntle/nomo.html

http://mathworld.wolfram.com/
http://www.wikipedia.org/wiki/Gini_coefficient
http://www.wikipedia.org/wiki/Lorenz_curve
http://www.wikipedia.org/wiki/Pareto
http://www.wikipedia.org/wiki/TeX
http://www.blooberry.com/indexdot/history/netscape.htm
http://www.computerworld.com/cwi/careers/surveysandreports
http://www.oreilly.com/catalog/opensources/book/young.html
http://www.jwz.org/gruntle/nomo.html

Appendixes

Jesús M. González Barahona
Joaquín Seoane Pascual
Gregorio Robles

P07/M2101/02710

© FUOC • P07/M2101/02710 Appendixes

Index

1. Appendix A. Learning guide... 5

2. Appendix B. Key dates in the history of free software........ 10

3. Appendix C. GNU Public License .. 17

4. Appendix D. Texts of some legislative proposals and

related documents... 25

5. Appendix E. Creative Commons' Attribution-ShareAlike... 56

6. Appendix F. GNU Free Documentation License...................... 64

7. Glossary... 73

8. Style guide .. 78

© FUOC • P07/M2101/02710 5 Appendixes

1. Appendix A. Learning guide

A.1.�Introduction

What is free software? What is it and what are the implications of a free pro-

gram licence? How is free software developed? How are free software projects

financed and what are the business models associated to them that we are

experiencing? What motivates developers, especially volunteers, to become

involved in free software projects? What are these developers like? How are

their projects coordinated, and what is the software that they produce like?

In short, what is the overall panorama of free software?

These are the sort of questions that we will try to answer in this document.

Because although free software is increasing its presence in the media and in

debates between IT professionals, and although even citizens in general are

starting to talk about it, it is still for the most part an unknown quantity. And

even those who are familiar with it are often aware of just some of its features,

and mostly ignorant about others.

A.2.�Aims

The general aim is, unquestionably, that the reader should understand and

may think logically about basic free software concepts and their main impli-

cations. For more specific details on the aims, please see this address:

• Knowing what is (and what isn't) free software and the main consequences

that such a definition has.

• Exploring the rudiments of the legal questions surrounding free softwa-

re and, particularly, the importance of licenses, the main types and their

consequences.

• Having a perspective of the reality of free software, from a global and his-

torical point of view and from the perspective of the most advanced and

current projects.

• Learning and getting to know the methods in which free software projects

may be financed (when such means exist) and the relevant business mo-

dels.

• Learning the most important details of the free software development mo-

dels and the methods for studying them from the perspective of software

engineering.

© FUOC • P07/M2101/02710 6 Appendixes

A.3.�Contents�and�learning�plans

This text is structured into various chapters (didactic modules) and written in

such a way that they are practically independent and self-contained, which

means that, excepting the introduction, the book can be read in any order.

However, readers are advised to follow the order established for the book, in

accordance with the plan below.

The course will be structured in ECTS credits, which means that the planning

will require an overall effort form the student, which will include exercises

and debates, which will last 150 hours.

Chapter 1 (6 hours). Introductory module discussing all the specific aspects

of free software and focusing essentially on an explanation of the underlying

basis, for people who are learning about the matter for the first time and on

highlighting its importance. An introduction covering the definition of free

software and its main consequences, amongst other elements, will be provi-

ded.

Aims Content Mate-
rials

Activities Time

Learning what freedom means with re-
gard to software

The four freedoms Section
1.1.1

Reading the material 2
hours

Distinguishing between free software
and other related concepts

Definition of related concepts, whether
they are similar or analogous

Section
1.1.2

Reading the material and making
suggestions

1 hour

Introducing the reasons for which free
software is made

Ethical and practical motivations Section
1.1.3

Reading the material and making
suggestions

1 hour

Introducing the consequences of free
software

Consequences for the user, the State,
the developer, etc.

Section
1.1.4

Reading the material and making
suggestions

2
hours

Chapter 2 (14 hours). Historical development of the world of free software,

from its beginning in the seventies to the current moment, offering a broad

vision of the most notable milestones, the main projects, the financial, pro-

fessional or social evolution, etc.

Aims Content Materials Activities Time

Learning about the "prehistory"
of free software

Facts before the existence of
the concept

Section 2.1 and beginning
of annex B

Reading the material and
making suggestions

2
hours

Learning about the history of free
software all the way up to the
present day

Most significant events in chro-
nological order

Sections 2.2, 2.3, 2.4 and
rest of annex B

Reading the material and
making suggestions

10
hours

Trying to predict the future Some predictions (hopes and
problems)

Section 2.5 Reading the material and
making suggestions

2
hours

© FUOC • P07/M2101/02710 7 Appendixes

Chapter 3 (9 hours). Legal aspects of free software. The most common free

software licenses and their effects on business and development models will

be analysed in detail.

Aims Content Mate-
rials

Activities Time

Learning the basic concepts of intellec-
tual and industrial property

Copyright, intellectual property, pa-
tents, brands, industrial secrets

Section
3.1

Reading the material and making
suggestions

3
hours

Learning the legal basis of free software:
the licenses

Definition of free licenses and the featu-
res of the most important licenses

Section
3.2

Reading the material and making
suggestions

7
hours

Chapter 4 (8 hours). Characteristics of free software developers and the moti-

vations that lead them to participate in the projects, thereby making the exis-

tence of free programmes possible.

Aims Content Materials Activities Time

Getting to know the type of people
that develop free software

Ages, genders, professions, geo-
graphical location, etc.

Sections 4.1, 4.2,
4.3 and 4.4

Reading the material and
making suggestions

4
hours

Learning how much time to spend
on it and why

Weekly dedication, motivations,
questions of prestige and leaders-
hip

Sections 4.5, 4.6,
4.7 and 4.8

Reading the material and
making suggestions

4
hours

Chapter 5 (22 hours). Financial aspects of free software and, especially, met-

hods for financing the projects and business models that are being explored.

Aims Content Materials Activities Time

Learning about the sources of finan-
ce

Financial sources used Section 5.1 Reading the material and
making suggestions

8
hours

Learning how to profit from free
software

Business models Sections 5.2 and 5.3 Reading the material and
making suggestions

8
hours

Learning about the relationship
between free software and the mo-
nopolistic situations that are typical
in the software industry

Monopolies and software. Free
software's role

Sections 5.1, 5.2,
5.3 and 5.4

Reading the material and
making suggestions

6
hours

Chapter 6 (28 hours). Relationship of policies and free software and, especially,

policies for promoting free software and the use of free software by public

administrations.

Aims Content Mate-
rials

Activities Time

Learning about the effect of free softwa-
re on public administrations.

Main effects and difficulties in imple-
mentation

Section
6.1

Reading the material and making
suggestions

4
hours

Learning about what administrations do
or can do with regard to free software

Solutions to needs, promotion and in-
vestment in R&D

Section
6.2

Reading the material and making
suggestions

4
hours

© FUOC • P07/M2101/02710 8 Appendixes

Aims Content Mate-
rials

Activities Time

Learning about legislative initiatives Revision of legislative initiatives for im-
plementing or supporting free software,
including examples of specific texts.

Section
6.3

Reading the material and making
suggestions

20
hours

Chapter 7 (12 hours). Management and development models for free software

projects, techniques that have been successful and quantitative and qualitati-

ve studies of free software from the perspective of development.

Aims Content Materials Activities Time

Learning about the paradigmatic models
of software development

"The cathedral and the ba-
zaar"

Sections 7.1, 7.2
and 7.5

Reading the material and making
suggestions

3
hours

Learning about the processes involved in
the development of free software

Characteristic processes Section 7.4 Reading the material and making
suggestions

3
hours

Learning about the possibilities and reali-
ties of the availability of sources and the
associated registries with regard to the
engineering of free software

Resources and quantitative
studies

Section 7.6 Reading the material and making
suggestions

3
hours

Learning what remains to be done in
free software engineering

Future tasks Section 7.3 Reading the material and making
suggestions

3
hours

Chapter 8 (14 hours). Introduction of the technologies and development en-

vironments of free software and their effects on the management and evolu-

tion of the projects.

Aims Content Materials Activities Time

Learning the general features of the
environments and the tools that free
software developers use

General characterisation Section 8.1 Reading the material and
making suggestions

1/2
hour

Learning the basic development tools Languages, compilers, operating sys-
tems, etc.

Section 8.2
and 8.3

Reading the material and
making suggestions

2
hours

Learning the basic methods with
which developers work together

Messaging, forums, repositories,
chats and wikis

Section 8.4 Reading the material and
making suggestions

2
hours

Learning the mechanisms used to ma-
nage sources and their versions

CVS and new alternatives Section 8.5 Reading the material and
making suggestions

4
hours

Learning how free software is docu-
mented

Languages and tools that are to be
documented

Section 8.6 Reading the material and
making suggestions

2
hours

Learning how errors and tasks are ma-
naged

Bug management systems Section 8.7 Reading the material and
making suggestions

1 hour

Learning how portability is supported Resources for other architectures Section 8.8 Reading the material and
making suggestions

1/2
hour

Learning about the public environ-
ments of integrated development

SourceForge and others Section 8.9 Reading the material and
making suggestions

2
hours

© FUOC • P07/M2101/02710 9 Appendixes

Chapter 9 (30 hours). Studying free software projects (revising the most in-

teresting classical free software projects, in terms of results obtained, mana-

gement model, historical evolution , effect on other projects, etc.). Study of

companies related to free software.

Aims Content Materials Activities Time

Learning an example of operating sys-
tems

Linux and *BSD Sections 9.1 and
9.2

Reading the material and making sug-
gestions

8 hours

Learning an example of desktop environ-
ments

Gnome and KDE Sections 9.3 and
9.4

Reading the material and making sug-
gestions

8 hours

Learning an example of system program-
mes

Apache Section 9.5 Reading the material and making sug-
gestions

2 hours

Learning an example of end user pro-
grammes

Mozilla and Ope-
nOffice

Sections 9.6 and
9.7

Reading the material and making sug-
gestions

4 hours

Learning an example of a distribution Red Hat and Debian Sections 9.8 and
9.9

Reading the material and making sug-
gestions

8 hours

Chapter 10 (6 hours). Module in which free resources other than software

are presented; these are resources that have been created partly thanks to free

software and the example that it has set.

Aims Content Mate-
rials

Activities Time

Learning other free resources Free texts, hardware, teaching materials
and art

Section
10.1

Reading the material and making
suggestions

3
hours

Learning about the applicable
licenses

Licenses, especially the Creative Commons
licenses

Section
10.2

Reading the material and making
suggestions

3
hours

© FUOC • P07/M2101/02710 10 Appendixes

2. Appendix B. Key dates in the history of free
software

This is only a list of the dates that could be considered to be important in the

history of free software. It is based on the one that appears in [132] and the

one provided by the Open Source Initiative [146] and is not supposed to be

comprehensive: there are certainly many important dates that have not been

included in the list. However, we hope to provide a sufficiently complete view

of the historical landscape in which the world of free software has evolved.

Dates Events

1950s and 1960s The software is distributed with its source code and without any restrictions on the user groups
such as SHARE (IBM) and DECUS (DEC).

1969, April RFC number 1, which describes the first Internet (then called ARPANET) is published. The free
availability of the RFCs and, particularly, of the specifications of the protocols used in Internet
were key factors for its development.

1970, January IBM began selling its software separately, creating the beginning of the çproprietary software in-
dustry.

1972 Unix begins to be distributed in universities and research centres.

1973 Unix arrives at Berkeley University, in California. The history of Unix BSD begins.

1973 SPICE is placed by Donald O. Penderson in the public domain. With time, it will become the
standard in its field (integrated circuit simulators).

1978 Donald Knuth, of Stanford University, starts working on TeX, an electronically composed type-
setting that will be distributed as free software.

1983 Richard Stallman writes "The GNU Manifesto", in which he asks for software to be shared with
the public again.

1984 The GNU project begins. The developers that assist with the project, initially coordinated by
Richard Stallman, begin to create a large number of tools similar to the ones that there were in
Unix, including an editor (Emacs) and a compiler (GCC). The aim is to build an operating sys-
tem that is completely free.

1985 The X Consortium, based in the MIT, distributes the X Window system with free software, under
a license that is hardly restrictive at all.

1985 Richard Stallman founds the Free Software Foundation. Among other tasks, the Foundation will
work as a centre that receives the funds and resources that will assist the development of the
GNU project and as the owner of the intellectual property generated by the project.

1989 Cygnus, the first company that essentially provides commercial services for free software (inclu-
ding support, development and adaptation of free programmes), is founded.

1989 The Network Simulator (or simply, ns) begins to be developed as a variant of the REAL Network
Simulator. ns is a free telecommunication network simulator that will be used extensively by uni-
versities all over the world and that will become a standard in its field, to a certain extent.

1990 The Free Software Foundation announces that it intends to build a kernel that will be called
GNU Hurd. The aim of this project is to complete what the GNU project's strategy was most
missing: a complete operating system.

© FUOC • P07/M2101/02710 11 Appendixes

Dates Events

1991 William and Lynne Jolitz write a series in Dr. Dobbs Journal on how to port BSD Unix to PC based
on the i386.

1991, August Linus Torvalds, a twenty-one year old Finnish student announces that he has begun work on a
free Unix-type kernel using GNU tools, such as GCC. His aim at the time is to build a free Minix.

1991, October Linus Torvalds releases the first version of his kernel, which is still very primitive and is called Li-
nux.

1992 The US Air Force awards New York University a contract to build an open source compiler for
the new version of Ada (a language that it was almost obligatory to use at that time in all con-
tracts with the US military), Ada 95. The NYU team chooses GNU GCC for the generation of co-
de and calls its compiler GNAT (GNU NYU Ada 95 Translator).

1992, July William and Lynne Jolitz release 386BSD 0.1, which, with time, will give rise to the projects
NetBSD, FreeBSD and later OpenBSD.

1993 SuSE is founded in Germany, which begins its business distributing Slackware Linux, translated
into German.

1993, August Ian Murdock starts a new distribution based on Linux called Debian GNU/Linux, which will be-
come the distribution built by voluntary developers with the most participants.

1993, December FreeBSD 1.0, one of the first stable distributions that descended from the Jolitz's 386BSD is rele-
ased on the Internet.

1994 The GNAT developers found the company Ada Core Technologies, with the aim of guarante-
eing its development and evolution in the future and with a business model based on providing
services to their clients' compiler (and not selling the compiler itself, which continues to be free
software). With time, GNAT will become the leader in the market of Ada compilers.

1994, January Version 0.91 of Debian GNU/Linux is released; it is the fruit of the efforts of twelve developers.

1994, March The first edition of the Linux Journal is published.

1994, 29th July Marc Ewing publishes the first version of Red Hat Linux. As is the case with Debian, the aim is to
improve the results of the predominant distribution of the time, Slackware.

1994, October NetBSD 1.0. is released

1995 Bob Young founds Red Hat Software buying the Red Hat Linux distribution from its creator,
Marc Ewing, and merging it with his own business, ACC, which has been selling materials rela-
ted to Linux and Unix though catalogue since 1993. A little later, Red Hat Linux 2.0 is released;
it is the first distribution that includes the RPM packaging format.

1995 DARPA supports the development of ns through the VINT project.

1995, January FreeBSD 2.0. is released

1995, April The first official release of Apache (0.6.2) takes place.

1996 The First Conference on Freely Redistributable Software takes place in Cambridge, Massachu-
setts, US.

1996, October The KDE project is announced; it is one of the first to address usability problems in the Unix en-
vironment and the first that tries to do so on a large scale in the world of free software.

1997, January Eric S. Raymond presents his article "The cathedral and the bazaar", in which he expresses his
opinions on why certain free software development models work.

1997, August Miguel de Icaza announces the GNOME project, a competitor to KDE with similar aims, but with
the explicit objective of ensuring that the whole of the resulting system is free software. As a re-
action to the licensing problems that KDE has, which involve a fundamental component, the Qt
library, which is not free software at that time, the Free Software Foundation and other similar
bodies are created.

© FUOC • P07/M2101/02710 12 Appendixes

Dates Events

1998, 22nd January Netscape declares its intention of distributing the code of its browser (Netscape Navigator),
which has been the leader in the web browser market, as free software.

1998, 3rd February Chris Peterson, Todd Anderson, John Hall, Larry Augustin, Sam Ockman and Eric Raymond me-
et up to study the consequences of Netscape's announcement with regard to the release of its
browser and decide to promote the term open source software [146], using it as a brand that
guarantees that the products that have it consist of free software. The promoters of this term
understand that it is more appropriate for the corporate world than the one that was more
commonly used up to that moment, free software. The Open Source Initiative is created to ma-
nage the term.

1998, 31st March Netscape publishes a large part of its source code for Netscape Navigator on the Internet.

1998, 7th May Corel announces the NetWinder, a network computer based on Linux. It is the first time that
a large company commercialises an element that uses software that is basically free software.
Shortly afterwards, Corel announces its plan to port its office software (which includes WordPer-
fect) to Linux, which is also a novelty for the time.

1998, 28th May Sun Microsystems and Adaptec become part of Linux International. They are the first IT compa-
nies to do so.

1998, June The technical conference of USENIX, which is usually dedicated to Unix, opens a parallel session
called FREENIX, focusing on free software.

1998, 22nd June IBM announces that it will commercialise and provide support for Apache, using it as the server
of its WebSphere product line.

1998, July Debian GNU/Linux 2.0 is released; it has been built by more than three hundred volunteers and
the distribution includes more than one thousand five hundred packages.

1998, July KDE 1.0 is released; it is the first version distributed as stable. Various GNU/Linux distributions
incorporate shortly afterwards.

1998, August Linus Torvalds and Linux appear on the cover of Forbes magazine.

1998, 29th September Red Hat, which is the leading company in the market of Linux-based distributions at the time,
announces that Intel and Netscape have bought a minority share in its capital. Free software be-
gins to awaken interest among investors.

1998, November MandrakeSoft is founded and shortly afterwards, it releases Mandrake Linux, its distribution of
GNU/Linux.

1998, 1st November The Halloween Documents, in which Microsoft supposedly identifies GNU/Linux and free softwa-
re as an important competitor and plans how to attack it, are published.

1999, 27 th January HP and SGI announce that they will support Linux in their computers, which marks the begin-
ning of a trend: the abandonment of proprietary Unix by the computer manufacturers that used
them as their operating system, in favour of Linux.

1999, March GNOME 1.0, which will subsequently be made more stable (October GNOME) and incorpora-
ted in various GNU/Linux distributions, is released.

1999, 9th March Debian GNU/Linux 2.1 is released, with more than two thousand packages.

1999, 15th March Apple releases Darwin, which will be the central component of its new Mac OS X, under a free
license.

1999, August Red Hat is floated on the stock exchange. The price of the shares increases enormously in the
first days after the float, to the extent that it is capitalised at 4,800 million dollars. Later, other
companies related to free software, such as VA Linux and Andover.net, will also be floated on
the stock exchange. The value of the shares of all these companies will plummet a few years la-
ter, when the dotcom bubble explodes; many of these companies will not survive the event.

© FUOC • P07/M2101/02710 13 Appendixes

Dates Events

1999, October Two companies are founded in order to produce software in the framework of the GNOME pro-
ject: Eazel (which will go bankrupt in 2002, after producing Nautilus, a file manager) and Helix
Code (later renamed Ximian and subsequently bought by Novell, which will produce tools such
as Red Carpet or Evolution).

1999, November Red Hat Software buys Cygnus. The resulting company is the biggest company in the world, in
the field of free software.

2000, January Mozilla M13, considered by many as the first reasonably stable version of Mozilla, is released al-
most two years after the release of a large part of Netscape Navigator's code.

2000, May GNOME 1.2 (Bongo GNOME) is released.

2000, August The creation of the GNOME Foundation is announced.

2000, 15th August Debian GNU/Linux 2.2 is released, with more than two thousand five hundred source packages,
which comprise approximately 55 million lines of code.

2001, January Version 2.4 of Linux is released.

2001, 15 th January Wikipedia is started. The idea of building an encyclopaedia using a wiki as IT support, where, in
principle, anyone can cooperate, applying working methods that are very similar to those used
in free software, becomes a reality.

2002, 30th January ObjectWeb, an organisation founded in France by Bull, France Telecom and INRIA that is one of
the first organisations designed to produce free software by cooperating with companies and re-
search centres, is founded with clearly commercial objectives and the idea of being the nucleus
of an international community of interests.

2002, 3rd April KDE 3.0, the third generation of the KDE desktop environment, is released. The quality of free
desktops begins to match that of traditional commercial desktops.

2002, April The gnuLinEx project is publicly announced; with this project, the Regional Government of Ex-
tremadura (Spain) wishes to use its own GNU/Linux distribution in the computers of all the pu-
blic schools in the region.

2002, May Mozilla 1.0, the first officially stable version of the project, is released.

2002, 1st May The office suite, OpenOffice.org 1.0, is released; it will soon become a standard office applicati-
on suite in the free software world.

2002, 26th June GNOME 2.0, which represents an important step forward for users, with a more carefully desig-
ned interface and more attention to user-friendliness, is released. Other aspects that improve
the accessibility are also introduced.

2002, 19th July Debian GNU/Linux 3.0 is released with more than 100 million lines of source code; more than
nine hundred developers participate in this version.

2002, 28th July Version 3.0 of Knoppix is released; it is an evaluation distribution that can be installed on a hard
disk quickly and easily, and it becomes a tremendous success.

2002, 23th September The first version of Firefox (which is called Phoenix at the time) is released, as an experimental
extension based on the code of Mozilla Suite that is supposed to be simpler.

2002, December Red Hat Software announces that its cash flow in the second and third quarters of 2002 was po-
sitive.

2002, 16th December The first Creative Commons licenses are published (although the project was launched in 2001).

2003, January MandrakeSoft, a company that produces the Mandrake Linux distribution, declares bankruptcy.

2003, 19 th January FreeBSD 5.0-RELEASE is released, after almost three years of work since the previous stable large-
scale version.

© FUOC • P07/M2101/02710 14 Appendixes

Dates Events

2003, 22 th January The number of articles in English on Wikipedia reaches one hundred thousand articles. Shortly
afterwards, the number of German articles reaches ten thousand.

2003, February Motorola begins selling the A760 in China; it is the first mobile telephone that uses an operating
system based on Linux (the MontaVista Linux distribution).

2003, 6th March The SCO group files a lawsuit against IBM for devaluing its version of Unix. This marks the begin-
ning of a lawsuit in which IBM is accused of contributing code that belongs to SCO to the Linux
kernel.

2003, 28th May Munich City Council (Germany) announces that Linux will replace Windows in most of its com-
puter systems.

2003, July MandrakeSoft announces that its finances have been positive for the whole year and that it ex-
pects to come out of receivership in late 2003.

2003, 7th July An open letter [220] is written to the WIPO (World Intellectual Property Organization) asking it
to examine new open models of collaborative creation (including free software but also the Hu-
man Genome project or open scientific journals).

2003, 15th July The Mozilla Foundation is established. Netscape Inc. (now the property of AOL) announces that
it will no longer develop the Netscape browser and, therefore, it will no longer work on the Mo-
zilla project. The Mozilla Foundation is established with a donation of two million dollars from
AOL and material support and human resources from various companies, including AOL itself,
Red Hat and Sun Microsystems.

2003, 4th August Novell buys Ximian Inc., one of the leading companies in the development of free software (es-
pecially for GNOME), as part of its strategy to establish itself in the market for Linux-related so-
lutions.

2003, 2th September OpenOffice.org 1.1 is released.

2003, 24th September The European Parliament amends the Directive on Patentability of Computer-Implemented In-
ventions so that (if it is approved as it stands) software patents are not allowed in the European
Union. The Directive, which was originally proposed by the European Commission precisely to
ensure that these types of patents were legal, is still in the codecision procedure, in which the
Council of Ministers will also have to provide its opinion.

2003, 5th November Version 1 (FC1) of de Fedora Core, the fruit of the communal development process that Red
Hat had announced a few months before, is released. As of this moment, the company Red Hat
will commercialise Red Hat Enterprise Linux, whilst the Fedora Core collections are not officially
maintained by Red Hat, but by the community of voluntary developers that build it with the as-
sistance of Red Hat (which already existed before Red Hat decides on this collaboration).

2004, 13 th January Novell finishes its purchase of SuSE for a total of 210 million dollars.

2004, 9th February The Mozilla Foundation decides to change the Mozilla Firebird name (previously called Phoenix)
to Mozilla Firefox. This will be the definitive name of the browser and its stage of development
is similar to that of version 1.0.

2004, 18th May The Council of Ministers, as part of the codecision process on the European Directive on the Pa-
tentability of Computer-Implemented Inventions, decides to submit a compromise version of the
text to the European Parliament; however, it is accused of ignoring the Parliament's vote, as the
new version permits the patenting of software. The decision is so contentious, even within the
Council itself, that it is not formally approved until March 2005.

2004, 8th September Pepper Computer announces that it will launch the first miniPC with a touch screen that uses an
operating system that is completely free, based on Fedora Core.

2004, 20th September The number of articles on Wikipedia reaches one million, in one hundred and five languages.

2004, 20th October The first version of Ubuntu is released; it is based on Debian and the aim is to publish new versi-
ons regularly. The construction of the distribution is financed by the company Canonical, which
offers maintenance and services for the distribution. The distribution will become very success-
ful, fairly quickly.

© FUOC • P07/M2101/02710 15 Appendixes

Dates Events

2004, 9th November Version 1.0 of Firefox is released, after a long series of preparatory versions. This version was
downloaded more than 25 million times in the one hundred days following its release.

2005, 24 th January MandrakeSoft announces that it is buying the Brazilian company Conectiva, which releases a
distribution based on linux with the same name. Shortly afterwards, MandrakeSoft announces
that it is changing its name to Mandriva.

2005, 1st May OASIS recognises ODF (open document format), the data format use by OpenOffice.org 2.0,
among others, as the standard.

2005, 25th May Nokia announces its Nokia 770, a miniPC that uses a version of Debian GNU/Linux with the X
Window system and GTK+.

2005, 6th June Debian GNU/Linux 3.1 is released; it now has more than 200 million lines of source code.

2005, 14th June Sun Microsystems releases Open Solaris, the free version of its Solaris operating system.

2005, 15th June Mandriva buys the US company Lycoris (previously called Redmond Linux) and begins working
on a distribution that incorporates the previous versions of Mandrake, Conectiva and Lycoris.

2005, 6th July The European Parliament rejects the proposal of the Directive on the Patentability of Computer-
Implemented Inventions received from the Council of Ministers, during the second reading. This
means that the only legal text applicable to the subject in the European Union is the European
Patent Convention of 1973.

2005, 20th October Version 2.0 of OpenOffice.org, which is distributed under the LGPL, is released.

2005, December The first version of Ruby on Rails, a work environment for the development of web applications
using the model-view-controller architecture, is released. Distributed with license X11, it will be
widely used in the prototyping and development of numerous web services.

2005, December Nicholas Negroponte announces the OLPC (One Laptop Per Child) project, which has the aim
of deciding and building a portable PC of 100 dollars for children in developing countries. It
uses free software with a GNU/Linux version called Sugar, based on Red Hat.

2005, 14th December The science journal Nature publishes an article comparing Wikipedia with the Encyclopaedia Bri-
tannica; according to the article, the degree of precision with regard to scientific subjects of
both encyclopaedias is similar.

2006, 16 th January The first draft of the GPLv3 is published; it is an attempt to update the GPL, which is the license
that is most commonly used for free software projects at the time (and by a long way). At this
point, an open debating process begins with regard to the changes.

2006, 1st March The number of articles in English on Wikipedia reaches one million.

2006, 20th March Fedora Core 5 is released.

2006, 1st June Ubuntu 6.06 LTS is released; it is advertised as being supported by the company Canonical for
three years.

2006, August The number of Firefox downloads reaches 200 million (there are many more downloads from
unofficial sites, which are not taken into account). Around this time, it is estimated that the
browser has a 12% share of the global market (approximately 20% in Europe).

2006, 12th November Sun announces that it will release the different versions of the Java platform under the GPL. Up
until this moment, these versions had been distributed for free in binary, which Sun had justified
citing compatibility and stability issues; however this has made it extremely difficult to use Java
in free software distributions.

2006, 30th November The ISO (International Standards Organization) and the IEC (International Electrotechnical Com-
mission) jointly publish OASIS' ODF version as an international standard (ISO/IEC 26300:2006)
for the exchange of office automation information.

© FUOC • P07/M2101/02710 16 Appendixes

Dates Events

2006, December The Taiwanese company First International Computer (FIC) presents the first advanced mobile
telephone based on code that is completely open, in the Open Source in Mobile conference. It
is called Neo1973, it costs 350 dollars and it uses a software platform called OpenMoko, based
on the kernel of Linux 2.6, GTK+, X Windows and Matchbox.

2007, January The FLOSSImpact [80] study, on the effect (especially the economic effect) of free software, is
published. The study has been financed by the European Commission and it is the first large-
scale study in the field.

2007, 23rd February Version 3.0 of the Creative Commons Licenses is published.

2007, 8th April Version 4.0 of Debian GNU/Linux is released.

© FUOC • P07/M2101/02710 17 Appendixes

3. Appendix C. GNU Public License

Version 2, June 1991

Copyright© 1989, 1991 Free Software Foundation, Inc. 675 Mass Ave, Cam-

bridge, MA 02139, USA

Literal copies of this document may be copied and distributed, but not mo-

dified.

Preamble

The licenses for most software are designed to take away your freedom to share

and change it. By contrast, the GNU General Public License is intended to

guarantee your freedom to share and change free software--to make sure the

software is free for all its users. This General Public License applies to most

of the Free Software Foundation's software and to any other program whose

authors commit to using it. (Some other Free Software Foundation software

is covered by the GNU Lesser General Public License instead.) You can apply

it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our

General Public Licenses are designed to make sure that you have the freedom

to distribute copies of free software (and charge for this service if you wish),

that you receive source code or can get it if you want it, that you can change

the software or use pieces of it in new free programs; and that you know you

can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny

you these rights or to ask you to surrender the rights. These restrictions trans-

late to certain responsibilities for you if you distribute copies of the software,

or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for

a fee, you must give the recipients all the rights that you have. You must make

sure that they, too, receive or can get the source code. And you must show

them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer

you this license which gives you legal permission to copy, distribute and/or

modify the software.

© FUOC • P07/M2101/02710 18 Appendixes

Also, for each author's protection and ours, we want to make certain that

everyone understands that there is no warranty for this free software. If the

software is modified by someone else and passed on, we want its recipients to

know that what they have is not the original, so that any problems introduced

by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We

wish to avoid the danger that redistributors of a free program will individually

obtain patent licenses, in effect making the program proprietary. To prevent

this, we have made it clear that any patent must be licensed for everyone's

free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification

follow.

TERMS�AND�CONDITIONS�FOR�COPYING,�DISTRIBUTION�AND�MODIFI-

CATION

0) This License applies to any program or other work which contains a notice

placed by the copyright holder saying it may be distributed under the terms of

this General Public License. The "Program", below, refers to any such program

or work, and a "work based on the Program" means either the Program or

any derivative work under copyright law: that is to say, a work containing

the Program or a portion of it, either verbatim or with modifications and/or

translated into another language. (Hereinafter, translation is included without

limitation in the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered

by this License; they are outside its scope. The act of running the Program is

not restricted, and the output from the Program is covered only if its contents

constitute a work based on the Program (independent of having been made

by running the Program). Whether that is true depends on what the Program

does.

1) You may copy and distribute verbatim copies of the Program's source code

as you receive it, in any medium, provided that you conspicuously and appro-

priately publish on each copy an appropriate copyright notice and disclaimer

of warranty; keep intact all the notices that refer to this License and to the

absence of any warranty; and give any other recipients of the Program a copy

of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may

at your option offer warranty protection in exchange for a fee.

© FUOC • P07/M2101/02710 19 Appendixes

2) You may modify your copy or copies of the Program or any portion of

it, thus forming a work based on the Program, and copy and distribute such

modifications or work under the terms of Section 1 above, provided that you

also meet all of these conditions:

• a) You must cause the modified files to carry prominent notices stating

that you changed the files and the date of any change.

• b) You must cause any work that you distribute or publish, that in whole

or in part contains or is derived from the Program or any part thereof, to

be licensed as a whole at no charge to all third parties under the terms

of this License.

• c) If the modified program normally reads commands interactively when

run, you must cause it, when started running for such interactive use in

the most ordinary way, to print or display an announcement including

an appropriate copyright notice and a notice that there is no warranty (or

else, saying that you provide a warranty) and that users may redistribute

the program under these conditions, and telling the user how to view a

copy of this License. (Exception: if the Program itself is interactive but

does not normally print such an announcement, your work based on the

Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sec-

tions of that work are not derived from the Program, and can be reasonably

considered independent and separate works in themselves, then this License,

and its terms, do not apply to those sections when you distribute them as

separate works. But when you distribute the same sections as part of a whole

which is a work based on the Program, the distribution of the whole must be

on the terms of this License, whose permissions for other licensees extend to

the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights

to work written entirely by you; rather, the intent is to exercise the right to

control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with

the Program (or with a work based on the Program) on a volume of a storage

or distribution medium does not bring the other work under the scope of this

License.

3) You may copy and distribute the Program (or a work based on it, under

Section 2) in object code or executable form under the terms of Sections 1 and

2 above provided that you also do one of the following:

© FUOC • P07/M2101/02710 20 Appendixes

• a)) Accompany it with the complete corresponding machine-readable

source code, which must be distributed under the terms of Sections 1 and

2 above on a medium customarily used for software interchange; or,

• b) Accompany it with a written offer, valid for at least three years, to give

any third party, for a charge no more than your cost of physically perfor-

ming source distribution, a complete machine-readable copy of the cor-

responding source code, to be distributed under the terms of Sections 1

and 2 above on a medium customarily used for software interchange; or,

• c) Accompany it with the information you received as to the offer to dis-

tribute corresponding source code. (This alternative is allowed only for

noncommercial distribution and only if you received the program in ob-

ject code or executable form with such an offer, in accord with Subsection

b above.)

The source code for a work means the preferred form of the work for making

modifications to it. For an executable work, complete source code means all

the source code for all modules it contains, plus any associated interface de-

finition files, plus the scripts used to control compilation and installation of

the executable. However, as a special exception, the source code distributed

need not include anything that is normally distributed (in either source or

binary form) with the major components (compiler, kernel, and so on) of the

operating system on which the executable runs, unless that component itself

accompanies the executable.

If distribution of executable or object code is made by offering access to copy

from a designated place, then offering equivalent access to copy the source co-

de from the same place counts as distribution of the source code, even though

third parties are not compelled to copy the source along with the object code.

4) You may not copy, modify, sublicense, or distribute the Program except as

expressly provided under this License. Any attempt otherwise to copy, modify,

sublicense or distribute the Program is void, and will automatically terminate

your rights under this License. However, parties who have received copies, or

rights, from you under this License will not have their licenses terminated so

long as such parties remain in full compliance.

5) You are not required to accept this License, since you have not signed it.

However, nothing else grants you permission to modify or distribute the Pro-

gram or its derivative works. These actions are prohibited by law if you do

not accept this License. Therefore, by modifying or distributing the Program

(or any work based on the Program), you indicate your acceptance of this Li-

cense to do so, and all its terms and conditions for copying, distributing or

modifying the Program or works based on it.

© FUOC • P07/M2101/02710 21 Appendixes

6) Each time you redistribute the Program (or any work based on the Pro-

gram), the recipient automatically receives a license from the original licensor

to copy, distribute or modify the Program subject to these terms and conditi-

ons. You may not impose any further restrictions on the recipients' exercise

of the rights granted herein. You are not responsible for enforcing compliance

by third parties to this License.

7) If, as a consequence of a court judgment or allegation of patent infringe-

ment or for any other reason (not limited to patent issues), conditions are

imposed on you (whether by court order, agreement or otherwise) that con-

tradict the conditions of this License, they do not excuse you from the condi-

tions of this License. If you cannot distribute so as to satisfy simultaneously

your obligations under this License and any other pertinent obligations, then

as a consequence you may not distribute the Program at all. For example, if

a patent license would not permit royalty-free redistribution of the Program

by all those who receive copies directly or indirectly through you, then the

only way you could satisfy both it and this License would be to refrain entirely

from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any par-

ticular circumstance, the balance of the section is intended to apply and the

section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or ot-

her property right claims or to contest validity of any such claims; this section

has the sole purpose of protecting the integrity of the free software distribu-

tion system, which is implemented by public license practices. Many people

have made generous contributions to the wide range of software distributed

through that system in reliance on consistent application of that system; it is

up to the author/donor to decide if he or she is willing to distribute software

through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a

consequence of the rest of this License.

8) If the distribution and/or use of the Program is restricted in certain countri-

es either by patents or by copyrighted interfaces, the original copyright hol-

der who places the Program under this License may add an explicit geograp-

hical distribution limitation excluding those countries, so that distribution is

permitted only in or among countries not thus excluded. In such case, this

License incorporates the limitation as if written in the body of this License.

9) The Free Software Foundation may publish revised and/or new versions

of the General Public License from time to time. Such new versions will be

similar in spirit to the present version, but may differ in detail to address new

problems or concerns.

© FUOC • P07/M2101/02710 22 Appendixes

Each version is given a distinguishing version number. If the Program specifies

a version number of this License which applies to it and "any later version",

you have the option of following the terms and conditions either of that ver-

sion or of any later version published by the Free Software Foundation. If the

Program does not specify a version number of this License, you may choose

any version ever published by the Free Software Foundation.

10) If you wish to incorporate parts of the Program into other free programs

whose distribution conditions are different, write to the author to ask for per-

mission. For software which is copyrighted by the Free Software Foundation,

write to the Free Software Foundation; we sometimes make exceptions for this.

Our decision will be guided by the two goals of preserving the free status of

all derivatives of our free software and of promoting the sharing and reuse of

software generally.

NO�WARRANTY

11) BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO

WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-

CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-

RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS"

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, IN-

CLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERC-

HANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK

AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.

SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF

ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12) IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO

IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO

MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABO-

VE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPE-

CIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE

USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED

TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES

SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM

TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR

OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMA-

GES.

END�OF�TERMS�AND�CONDITIONS

How�to�Apply�These�Terms�to�Your�New�Programs

© FUOC • P07/M2101/02710 23 Appendixes

If you develop a new program, and you want it to be of the greatest possible

use to the public, the best way to achieve this is to make it free software which

everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach

them to the start of each source file to most effectively convey the exclusion of

warranty; and each file should have at least the "copyright" line and a pointer

to where the full notice is found.

one line to give the program's name and an idea of what it does. Copyright (C)

yyyyname of author

This program is free software; you can redistribute it and/or modify it under

the terms of the GNU General Public License as published by the Free Softwa-

re Foundation; either version 2 of the License, or (at your option) any later

version.

This program is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY

or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public Licen-

se for more details.

You should have received a copy of the GNU General Public License along with

this program; if not, write to the Free Software Foundation, Inc., 51 Franklin

Street, Fifth Floor, Boston, MA 02110-1301, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it

starts in an interactive mode:

Gnomovision version 69, Copyright (C) yearname of author Gnomovision co-

mes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free

software, and you are welcome to redistribute it under certain conditions; ty-

pe `show c' for details.

The hypothetical commands `show w' and `show c' should show the appro-

priate parts of the General Public License. Of course, the commands you use

may be called something other than `show w' and `show c'; they could even

be mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your

school, if any, to sign a "copyright disclaimer" for the program, if necessary.

Here is a sample; alter the names:

© FUOC • P07/M2101/02710 24 Appendixes

Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gno-

movision' (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into

proprietary programs. If your program is a subroutine library, you may consi-

der it more useful to permit linking proprietary applications with the library.

If this is what you want to do, use the GNU Lesser General Public License

instead of this License.

© FUOC • P07/M2101/02710 25 Appendixes

4. Appendix D. Texts of some legislative proposals and
related documents

Below is the literal text of some of the legislative proposals mentioned in chap-

ter 6 and of some of the related documents.

D.1.�Draft�bill�brought�by�Laffitte,�Trégouët�and�Cabanel�(France)

We provide below a translation of the proposed law made in October 1999

by the French senators Pierre Laffitte, René Trégouët and Guy Cabanel

[laffitte99:_propos].

D.1.1.�Recitals

(Only the paragraphs on free software are included.)

[...] In order to guarantee the perpetuity of accessible data, facilitate its exchan-

ge and ensure that citizens have free access to information, the use of this in-

formation by the Administration must not depend on the goodwill of softwa-

re manufacturers. It is necessary to have free systems whose development may

be guaranteed thanks to the manufacturers' source code being available to all.

Free software is currently developing very fast. There are many IT companies

that recognise that the future of their business is not in selling software, but

in assisting people that use it, by providing the associated services.

Our bill would establish that, after a transitional period defined by decree, the

use of free software will be obligatory in all public administrations.

Proprietary software, whose source code is not freely available, may only be

used in specific cases, when an authorisation is provided by a free software

agency. [...]

D.1.2.�Articles

• Article 1. On the dematerialisation of information and data exchange

between public administrations.

State services, local administrations and public bodies will ensure that

their information and data are put into an electronic format, with electro-

nic networks, as of 1st January 2002.

The conditions that regulate the transition from the current paper-based

exchange and the future exchange using electronic formats and networks

will be specified by decree.

© FUOC • P07/M2101/02710 26 Appendixes

• Article 2. On the dematerialisation of public market processes.

In order to guarantee a great degree of transparency and quick access to in-

formation for companies, all public tenders and the attached documents,

will be published in electronic formats and networks, as of 1st January

2002. Likewise, all bids for public tenders must be published in electronic

formats and networks.

A decree will determine the mechanisms of the transition to electronic

processes.

• Article 3. On open technologies.

Subject to the exceptions mentioned in article 4, as of 1st January 2002,

State services, local administrations and public bodies may only use

software that is free to use and modify and for which the source code is

available.

A decree will determine the terms and conditions of the transition.

• Article 4. On the Free Software Agency.

A Free Software Agency will be created. It will be in charge of informing

the State services, local administration and public bodies of the conditions

in which this law must be applied. The Agency will determine the use of

software licenses that are appropriate in the context established by this

law.

The Agency will ensure the interoperability of the free software used by

the public administrations.

The Agency will make an inventory, for each sector, of any fields in which

there is no applicable free software, no applicable software that can be

freely used and modified or no applicable software whose source code is

available. On the basis of this inventory, the Agency will declare the rele-

vant public administrations as exempt from this law.

The Free Software Agency will be open to all internet surfers, and their

decisions must be preceded by consultations made on the Internet.

A representative of the Free Software Agency will be appointed in each

prefecture.

The Free Software Agency's methods of working will be established by de-

cree.

• Article 5. On the dissemination of the modifications to the software used

in the context of this law.

The Free Software Agency will ensure, whilst respecting copyrights, that

the modifications to the software are disseminated in accordance with the

framework of this law.

• Article 6.

The costs incurred by the State as a result of this law will be compensated

through increases in the rights defined in articles 575 and 575A of the

General Tax Code.

© FUOC • P07/M2101/02710 27 Appendixes

D.2.�Draft�Bill�of�Le�Déaut,�Paul�and�Cohen�(France)

We will now provide a translation of practically the whole of the draft bill

presented by Jean-Yves Le Déaut, Christian Paul and Pierre Cohen in April

2000.

D.2.1.�Recitals

The tremendous growth in the use of new information technologies and tele-

communications has made it necessary to produce accompanying legislation.

The public services and the local administrations must become the model and

engine of the information society that will guarantee individual freedoms,

consumer safety and equal opportunities in the field in question.

Various examples show that, despite some significant progress achieved

thanks to the actions of the Government in the field of the information soci-

ety, the State services tend to use communication standards that are intimately

linked to one single private provider, which means that a user or collective is

bound to act as the client of this same provider, thereby strongly reinforcing

the phenomena of abuse of dominant position.

The State service often use software with source code that is not available,

which makes it impossible to correct the bugs and faults that the suppliers

themselves refuse to correct or check whether there are security deficiencies in

sensitive applications. The State services use, sometimes unknowingly, softwa-

re that secretly transmits information that is a priori considered confidential,

to foreign societies or organisations.

However, the economic models of the software and telecommunications in-

dustry developed by the market are based, to a large extent, on the appropri-

ation of clientele and the exponential valuation of the obtainment of user

profiles. These economic models reward strategies of providing incompatible

products, of industrial secrets and of planned obsolescence and the violation

of individual freedoms. Although the French state cannot eliminate these un-

derlying tendencies using the law due to the transnational nature of commu-

nication networks, it can, however, facilitate the development of an informa-

tion society on French soil that is respectful of public freedoms, of consumer

safety and of equal opportunities, and this would hopefully set a precedent

for Europe and the world.

The law is based on five principles: a citizen's right to free access to public

information, the perpetuity of public data, the security of the State, consumer

safety in the information society and the principle of interoperability of the

laws on software.

© FUOC • P07/M2101/02710 28 Appendixes

In order to guarantee the citizen's free access to public information, the code

of the computerised data provided by the Administration must not be linked

to one single supplier. Open standards, in other words, those in which the

data coding regulations are public, make it possible to guarantee free access, as

they permit, where necessary, the development of free compatible software.

In order to guarantee the perpetuity of the public data, the use and mainte-

nance of the software must not depend on the goodwill of the software's cre-

ators. It is necessary to have systems whose development is always guaranteed

by the availability of the source code. The principle of source code availability

in the framework of license-based contracts, which is a principle that to date

has only been present as an option in the legislation on public utility and

software package purchases, must become the rule and be applied to all public

software purchases.

We have deliberately avoided an ambiguous legislative approach based exclu-

sively on the use of free software. It would not be appropriate for the State, re-

gardless of the recognised quality of the free software, to favour a determined

economic model for the publication of software. On the contrary, the obliga-

tory resort to open communication standards and the publication of source

code will guarantee equal opportunities, in accordance with the principles of

interoperability of the legislation on software.

In order to guarantee national security, it is necessary to have systems that

are free of elements that may provide remote control of the system or the in-

voluntary transmission of information to any third parties. We need systems

whose source code is freely accessible to the public, so that it can be exami-

ned by a large number of independent world experts. The bill that we propose

should provide more security for the State, as full working knowledge of the

source code would eliminate the growing number of pieces of software con-

taining "backdoors".

The bill that we propose would likewise reinforce consumer safety in the in-

formation society, as it would allow for the emergence of new offers of softwa-

re without "backdoors", which would not threaten the right to a private life

and individual freedoms.

But for equal opportunities to emerge, it will be necessary to reaffirm and

reinforce the principle of interoperability in the legislation on software and

legislation on compatibility. Today, both of these rights are threatened by the

parties that benefit from their dominant monopolistic position, who put obs-

tacles to avoid the emergence of any competition.

In order to guarantee the interoperability of software, the intellectual or in-

dustrial property rights of a software creator must not block the development

of new compatible software that would compete with him. The right to com-

patibility for all, in other words, the right to freely develop, publish and use

© FUOC • P07/M2101/02710 29 Appendixes

original software that is compatible with other software, must be guaranteed

by the law. Likewise, the principle of interoperability introduced by European

laws on software must prevail over the other intellectual or industrial property

rights that may apply. Particularly, the existence of a brand on a communica-

tions standard or a patent on an industrial process that is necessary to imple-

ment a communications standard, must not permit its owner to block or limit

the free dissemination of compatible free software.

The bill that we propose could be applied immediately. In effect, most softwa-

re editors are prepared to adopt open communication standards, such as those

defined in Paris, Boston and Tokyo by the World Wide Web Consortium. There

are many proprietary software editors that are likewise prepared to provide the

French Government with the source code of their products. In addition, the

offer of free software based on the Linux operating system will cover many of

the Administration's needs, now and in the future. However, the administrati-

ons and its collective bodies are not sufficiently informed about the existence

of open standards or the offers of software published with its source code.

In order to facilitate the fast implementation of free standards, it is necessary

to reinforce the role of the Inter-ministerial Commission on Technical Sup-

port for the Development of Information Technologies and Communication

in the Administration (Mission Interministérielle de Soutin Technique pour

le Développement des Technologies de l'Information et de la Communication

dans l'Administration), and entrust it with the mission of carrying out and

disseminating within the Administration, a census of the offer of open stan-

dards and software published with its source code. If there is no market for

this, the MTIC will be in charge of developing new standards or new softwa-

re published with its source code. In order to carry out these new tasks, the

MTIC will be transformed into the Agency of Information Technologies and

Communication (AITC).

When there is no market, the AITC will be in charge of developing new stan-

dards or new software published with its source code. In order to ensure equal

opportunities, the software developments that occur will be put in the public

domain; therefore, these developments may be sold as proprietary software or

as free software, according to the license freely chosen by the editor. The AITC

will also be in charge of evaluating the levels of interoperability, perpetuity

and security of the software purchased by the French Administration.

More generally, the open communication systems and the availability of the

source code are essential to guarantee the interoperability, on a European le-

vel, between the IT systems of the different administrations and the national

public bodies, and to avoid that the interconnection between systems depend

solely on the goodwill of the software editors. The AITC will also be in char-

ge of participating in the international cooperation projects in the sphere of

© FUOC • P07/M2101/02710 30 Appendixes

information technologies and communications, and of facilitating interope-

rability with the information systems of the other European Union member

countries.

The bill that we propose would cover the concerns listed above. It reminds us

that the State can play an important role in the economy, preserving national

and European interests, whilst defending the market economy. This bill would

allow France to stand as the defender of freedom within the new information

and communication technologies.

D.2.2.�Articles

• Article 1.

For all computerised data exchanges, the State Administration, the local

administrations and the local bodies would have the obligation of using

open communication standards, constituted by public regulations and

procedures for exchanging digital data.

• Article 2.

The Administration, the public bodies and the territorial public adminis-

trations are obliged to use software whose source code is accessible.

• Article 3.

All individuals or corporate entities have the right to develop, publish or

use original software that is compatible with the communication stan-

dards of any other software.

• Article 4.

A public State body will be created, called the Agency of Information Tech-

nologies and Communications. This body would report to the Ministry

of Industry. The AITC will have the task of reporting to and advising the

State services, the collective bodies and the public bodies on the creation

and identification of the technical requirements with regard to informati-

on and communication technologies. It will identify the needs of the pu-

blic services with regard to equipment and software, ensure that the com-

munication standards are harmonised and propose the technical practices

that must be applied. It will carry out inventories in each sector of activity

of the open standards and the available software.

Depending on the results of the inventory, it will support the develop-

ment of open standards and software published with its source code and

promote the use of this type of software in the public domain to mitigate

any deficiencies in the market.

The AITC will favour the interoperability with the information systems of

other EU member states and participate in the international cooperation

projects in the sphere of information and communication technologies.

The AITC will have a representative in each prefecture.

© FUOC • P07/M2101/02710 31 Appendixes

The AITC's ways of working will be established by decree.

• Article 5.

The modes of applying this law, as well as the conditions of the transiti-

on from the current situation, will be established by decree issued by the

Council of State.

• Article 6.

The expenses incurred by the State as a result of applying this law will be

paid using the sums established in articles 575 and 575A of the General

Tax Code.

D.3.�Bill�proposed�by�Villanueva�and�Rodrich�(Peru)

We will know provide the literal text of most of Draft Bill number 2485, on the

Law on Free Software in Public Agencies, of the Peruvian congressmen Edgar

Villanueva Núñez and Jacques Rodrich Ackerman [223].

D.3.1.�Recitals

The complexity of the world we're living in demands permanent review and

constant adaptation of its institutional framework to be up to date with the

current technological trends that the world imposes.

The discovery of new information technologies and among them, the free

software one, has become an ideal instrument to assure the preservation of

the State's data.

In this way technology fulfils its role of facilitating the different and multiple

human activities, being one of them, the handling of public information.

According to the Peruvian Constitution, in section 5 of article 2, "all persons

have the right to solicit information that one needs without disclosing the

reason, and to receive that information from any public entity within the pe-

riod specified by law, at a reasonable cost. Information that affects personal

intimacy and that is expressly excluded by law or for reasons of national se-

curity is not subject to disclosure".

Section 6 of the same article emphasizes the right all persons have "to be assu-

red that information services, computerized or not, public or private, do not

provide information that affects personal and family intimacy".

Having said this, it is obvious the concern of our Constitution for establishing

institutional bases that protect the citizens' freedom to information access and

the non-disclosure of information that affects personal and familiar intimacy,

likewise for reasons of national security.

© FUOC • P07/M2101/02710 32 Appendixes

The guarantee of these rights in our Constitution isn't solely based in the go-

odwill of the State's agents to fulfil the norms of the Constitution, but also by

the use of technologies that in some cases contribute and in others do not, to

an effective protection of said citizens' rights.

It is in this context that it is of utmost importance for the State the incorpo-

ration of those technologies that help to reinforce the exercise of the citizens'

access to information and its due reserve in cases that require so.

The use of Free Software in all of the State's agencies points in this direction.

Basically we can say that the fundamental principles that drive the present

Bill are tightly related to the basic guarantees of a democratic State and we

can sum them up in the following:

1) Free Access of the citizens to public information

2) Perpetuity of public data

3) Security of the State and of the citizens

To guarantee the citizens' free access to public information, it is essential that

the coding of the data isn't tied to a sole provider. The use of standard and open

formats assures this free access, making possible the creation of compatible

software.

To guarantee the perpetuity of public data, it's indispensable that the use and

maintenance of software do not depend on the goodwill of the providers, nor

on monopoly conditions, imposed by those. Systems whose evolution can be

guaranteed by the availableness of source code are needed.

To guarantee national security it's vital to have systems that are devoid of ele-

ments that allow remote control or the transmission of non-desired informa-

tion to third-parties. Therefore, it is essential to have systems whose source

code is freely accessible to the public, so that its inspection is allowed to the

State, the citizens and a great number of independent experts in the world.

This proposal provides more security, because the knowledge of the source

code will eliminate the growing number of programs with spy-ware.

In the same way, this Bill furthers the security of the citizens, both in their

condition of legitimate holders of the information handled by the State as in

their condition of consumers. In this last case it would allow the growth of

an extensive supply of free software devoid of potential spy-ware that makes

it possible to jeopardize private life and individual freedoms.

© FUOC • P07/M2101/02710 33 Appendixes

The State, looking to improve the quality of public administration as both

keeper and manager of private information, will establish the conditions in

which agencies of the State will acquire software in the future, that is, in a

manner that is compatible with the constitutional guarantees and basic prin-

ciples previously stated.

The project clearly states that any given software in order to be acceptable

for the State must not only be technically adequately to carry out a given

task, but must also fulfil some requisites in license matters, without which

the State could not guarantee the citizens the adequate process of their data,

looking over for their integrity, confidentiality and permanent accessibility,

all of which are critical elements for its fulfilment.

The State establishes conditions for the use of software by the agencies of the

State, without meddling in any way in the transactions of the private sector.

It is acknowledged that the State does not have the ample spectrum of con-

tractual freedom that the private sector has, because it is restricted due to the

requirement of transparency of all public acts, and in this sense the common

benefit must be the leading factor to take into account when legislating over

this matter.

The project also guarantees the principle of equality before the Law, because

no natural or legal entity is excluded of the right to purvey those goods, under

the conditions stated in this Bill and without any more limitations than the

ones that are established in the Bill of Contracts and Acquisitions of the State

(TUO Supreme Decree number 012-2001-PCM).

Additionally to these advantages we could highlight benefits that would be-

gin to show up as a consequence of these measures, immediately after being

carried out.

To begin with, there are the job opportunities for local programmers. Of the

universe of server Software1 commercialized in the U.S.A. over the last year,

27% belongs to "free" software, a truly significant portion for that huge and

competitive market. The number speaks for itself and constitutes a firm answer

to those who would think that free software would imply a hefty limitation

to the employment of programmers of the country. On the contrary, the ini-

tiative will allow the release of a great amount of resources, and an incentive

to boost human creativity.

By making use of free software, professionals can analyze the root of the pro-

blems and improve the development in whatever cases are necessary, using

the globally available free software, under different licenses. It is an ideal area

to employ creativity, an aspect in which young Peruvians would be able to

reach good levels.

© FUOC • P07/M2101/02710 34 Appendixes

On the other hand, by means of the free software we get rid of illegal software

that is present in some agencies of the State. The non-permitted use of software

inside the State or the mere suspicion of this constitutes a powerful incentive

to make any given public employee modify the situation that goes against

intellectual property.

Although it is correct to say that the adoption of free software is not necessary

to abide by the law, its use will drastically reduce the irregular occurrences and

will act as a medium of legal infection, both in the State and the private sector.

We can count many countries that are formally acknowledging an exclusive

use of Free Software in the public sector.

Among them we have France, where a legal norm about this subject is being

debated. The government of the city of Mexico (DF) has already started an

important migration to adopt free software in a general way and this is the

leading country in this field in the western world. Also, in Brazil, the state of

Recife has ruled its adoption. The Popular Republic of China has been using

free software for several years as a policy of the state. The same applies to

Scandinavian countries. In the US both NASA and the U.S. Navy among other

organizations have adopted free software for some of their needs, as have also

done so other government and private entities.

Finally, the project grants the execution of this law to the Presidency of the

Council of Ministers for being this organism the one that concentrates the di-

rection of all government institutions. In this sense it has a strategic advanta-

ge for carrying out the given reform and the migratory process of proprietary

software to free software.

These are the types of ideas in which these aspects have been specified in this

legislative proposal.

D.3.2.�Cost/Benefit�analysis

This initiative does not imply any expense to the national treasury. However,

for the fulfilment of its aims, it will be necessary to reassign the governmental

expenditure whose incidence confines itself to what is effectively expended

by each governmental organism in the processes of contracts and bids of the

State for the acquisition of software.

Although it is true that free software represents a substantial saving for the

State's economy, when compared with proprietary software, this is not the

central point of support of this Bill. As we have pointed out, its advantage

focuses on the technological reassurances that the program conveys to the

information that the State handles, information that in many instances is of

a reserved nature.

© FUOC • P07/M2101/02710 35 Appendixes

In this sense a better protection of the citizens' rights constitutes a non-mea-

surable benefit that must be taking into account from the cost/benefit analysis

point of view.

We can sum up the benefits of the project in the following subjects:

• National Security.

In order to perform its functions, the State must store and process infor-

mation on its citizens. The relationship between the individual and the

State depends on the privacy and integrity of this data, which must be

adequately kept against three specific risks:

1) Disclosure Risk: confidential data must be handled in such way that

the access to them is made possible only to authorized persons and insti-

tutions.

2) Risk of impossibility of access: the data must be stored in such way that

the access to them by authorized persons and institutions is guaranteed

for all its period of usefulness.

3) Risk of alteration: the alteration of data must be restricted, again only

to those authorised to do so.

With free software all these risks are considerably mitigated.

It allows the user to make a complete and exhaustive inspection of the

mechanisms that are used to process data. The fact that free software

allows the inspection of its sources is an excellent security measure because

having the mechanisms exposed to the eyes of trained professionals makes

hiding malicious functions inside them exponentially more difficult, even

if the end user does not take the time to search for them by himself.

• Technological Independence.

With proprietary software there is no freedom of contract in the aspects of

extension and correction of the system in use, a technological dependence

is forged, one in which the provider is in the position of ruling, one-way

only, terms, deadlines and costs.

Free Software entitles the users with the freedom to control, correct and

modify the program to suit it better to their needs. This freedom is not

aimed at programmers only. Although they are the ones who can take

advantage of it first-hand, the users benefit greatly too, for in this way they

can hire any programmer (not necessarily the original author) to correct

given errors or add functionality.

• Local development.

In the case of proprietary software, the user is able to execute or run a

programme, but not to inspect or modify it; consequently, the user can-

not learn from it; the users become dependent on a technology that not

only do they not understand but that is expressly prohibited to them. The

professionals in their environment, who could help the users to achieve

their aims, are equally limited: as the way in which the programme works

is secret and its inspection is not permitted, it is not possible to fix it. In

© FUOC • P07/M2101/02710 36 Appendixes

this way, local professionals see their possibilities of offering added value

constantly more limited and their employment horizons narrow, along

with their chances to learn more. With free software, these disadvantages

of proprietary software are enormously mitigated.

• Cost of software.

The cost is greatly reduced, because being free there is no need to ask for

additional licenses to continue using the program. This need does exist

with proprietary software. It is important for the user to be able to keep

these costs under control, because if he cannot, he might be impeded to

further carry on with his goals, bound by unplanned occurrences. Again,

here is the technological dependence that threatens free software.

• More sources of employment.

With free software handwork that was chained as a consequence of the

technological dependency of the State to proprietary software is freed.

Now user resources (in this case the State agencies) will be assigned for

maintenance and support of free software.

• Boost to creativity and entrepreneurship.

D.3.2.1.�Costs

The big cost that is involved with the change from proprietary to free software

is limited to the migratory process. Even if it is true that the migratory pro-

cess involves costs in studies, decision making to implement the new systems,

handwork to implement the change, data conversion, retraining of personal

and eventually expenses in licenses and/or development and time; it is no less

certain that all these are fixed costs and are paid only once.

On the other hand, proprietary software has its costs, which were paid and

which cannot be gotten back. But aside from these costs there are others in-

volved with proprietary software: permanent updates (sometimes reinforced

by a self-supported monopoly) and above all the huge price for the State that

is the loss of the freedoms that guarantee the control of its own information.

These costs are permanent and with the passage of time, sooner or later they

exceed the fixed costs of carrying out a migration.

To summarise, the benefits of the migratory process exceed its costs.

D.3.3.�Legal�Formula

D.3.3.1.�Article�1.�Aim�of�the�law

Employ exclusively free software in all the systems and computer equipment

of every State agency.

© FUOC • P07/M2101/02710 37 Appendixes

D.3.3.2.�Article�2.�Scope�of�application

The Executive, Legislative and Judicial branches as well as the autonomous

regional or local decentralized organisms and the corporations where the State

holds the majority of the shares will use free software in their systems and

computer equipment.

D.3.3.3.�Article�3.�Authority�of�Application

The authority in charge to execute the law shall be the Council of Ministers.

D.3.3.4.�Article�4.�Definition�of�free�software

For the purposes of this law, programme or free software shall be defined as that

whose license shall guarantee the user, without additional cost, the following:

• Unrestricted use of the program for any purpose.

• Unrestricted access to the respective source code.

• Exhaustive inspection of the working mechanisms of the program.

• Use of the internal mechanisms and arbitrary portions of the software, to

adapt them to the needs of the user.

• Freedom to make and distribute copies of the software.

• Modification of the software and freedom to distribute said modificati-

ons of the new resulting software, under the same license of the original

software.

D.3.3.5.�Article�5.�Exceptions

Given the case where no solution which uses free software exists, that could

satisfy the determined necessity, the State Agencies could adopt the following

alternatives adhering to their order.

If verifiable time restraints should occur in attending a technical problem and

proprietary software was found to be available, the organism that needed it

could negotiate a permission of exception before the competent authority to

utilize proprietary software that has the following characteristics:

• The programs shall comply with the stipulations mentioned in section 4

of the law, except for the free distribution of the modified program. In

such a case the permission of exception could be definitive.

© FUOC • P07/M2101/02710 38 Appendixes

• If no programs of the preceding category were available, those that exist in

a free project of advanced development shall be chosen. The permission

in this case shall be transitory and will automatically expire when the free

software becomes matures with the functionality that is necessary.

• If no products could be found that met these conditions, then proprietary

software could be used, but the demanded permission of exception from

the competent authority will expire automatically two years after it was

issued, having to be renewed previous establishment that a satisfactory

solution of free software was not available.

The competent authority shall emit a permission of exception only if the State

organism guarantees the storage of data in open formats, without prejudice

of payment for the proprietary licenses.

D.3.3.6.�Article�6.�Educational�permissions

All educational establishments that depend on the State are able to manage its

proprietary software license of its use in research, after paying the correspon-

ding intellectual property rights and applicable licenses, provided that the aim

of the research is directly associated to the use of the programme in question.

D.3.3.7.�Article�7.�Transparency�of�the�exceptions

The exceptions that originate in the authority of a given application must be

sustained and published in the website of the State's Portal.

The resolution that authorizes the exception must enumerate the functional

requirements that the program must fulfil.

D.3.3.8.�Article�8.�Exceptional�authorisation

In case some State agency can't fulfil its requirements with software stated in

article 2 of this law then it is authorized to acquire proprietary software to

store or process data which must be kept in reserve, the respective authority

must publish in the State's portal a report where the risks associated with the

use of given software for a particular application must be explained.

The exceptional permissions granted to State agencies related with security

and national defence are exempted from the previously stated obligation.

D.3.3.9.�Article�9.�Responsibilities

The maximum administrative authority and the technical and informative

authority of each agencies of the State assume the responsibility for the fulfil-

ment of this law.

© FUOC • P07/M2101/02710 39 Appendixes

D.3.3.10.�Article�10.�Regulatory�norm

The executive branch of the government will rule within one hundred and

eighty days deadline, the conditions, deadlines and forms in which the current

status quo will be changed to one which satisfies the conditions of this law,

and will guide, in that sense, all future contracts and negotiations for software

acquisition.

In the same way, it will direct the migratory process of the proprietary software

systems to free software ones, in every case where the given circumstances so

demand.

D.3.3.11.�Article�11.�Glossary�of�terms

a) Programme or software: any sequence of instructions used by a digital data

processing system to carry out a specific task or to solve a given problem.

b) Execution or use of a program: the act of using it on any digital data pro-

cessing system to carry out a function.

c) User: natural or legal entity that makes use of the software.

d) Source code or source programme: complete set of instructions and source

digital files created or modified by those who programmed them, plus all the

support digital files, like data tables, images, specifications, documentation,

and any other element that is necessary to create the executable program.

As an exception, all those tools that are usually available as free software in

other media may be excluded, for example, compilers, operating systems and

libraries.

e) Free software or programme: that which use guarantees the user, without

further cost, the following:

• Unrestricted use of the program for any purpose.

• Unrestricted access to the respective source code.

• Exhaustive inspection of the working mechanisms of the program.

• Use of the internal mechanisms and arbitrary portions of the software, to

adapt them to the needs of the user.

• Freedom to make and distribute copies of the software.

© FUOC • P07/M2101/02710 40 Appendixes

• Modification of the software and freedom to distribute said modificati-

ons of the new resulting software, under the same license of the original

software.

f) Proprietary software (non-free software), that which does not fulfil all the

requirements listed in the previous statement.

g) Open format: any manner of digitally coded information that satisfies both

existent standards and the following conditions:

• Its technical documentation is publicly available.

• The source code of at least one complete reference implementation is pu-

blicly available.

• There are no restrictions for the creation of programs that store, transmit,

receive or access data codified in such way.

D.4.�Letters�from�Microsoft�Peru�and�congressman�Villanueva

On 21st March 2002, Juan Alberto González, the general manager of Microsoft

Peru, sent a letter to congressman Edgar Villanueva Núñez with regard to his

draft bill on free software [129]. On 8th April, the congressman replied [179].

We include here a literal transcription of almost the whole text of both letters

(the paragraphs not related to the draft bill have been edited out).

D.4.1.�Letter�from�Microsoft�Peru

As we arranged in our meeting, we attended the forum organized in the Con-

gress of the Republic on March 6th, regarding the law that you have proposed.

There we got the chance to listen to several presentations on the subject. We

would now like to present our position so that you have a better view of the

real situation.

Your proposal mandates that every public organization exclusively uses free

software, also known as open source software. This is something which trans-

gresses the principles of equality before the law, of no discrimination, of free

private initiative, and of freedom of industry and contracting, which are pro-

tected by the Constitution.

Your proposal, by making mandatory the use of open source software, esta-

blishes discriminatory and non-competitive treatment in contracting and ac-

quisitions by public organizations, violating the basic principles of the Law of

State Contracting and Acquisitions (Number 26850).

© FUOC • P07/M2101/02710 41 Appendixes

By forcing the State to favour a business model supporting exclusively open

source software, your proposal will discourage local and international software

manufacturers who make real and important investments in the country, cre-

ate a significant number of direct and indirect jobs, and thus contribute to the

national income. In contrast, open source software development always has a

lesser benefit to the economy, since it mainly creates jobs in the service sector.

Your proposal imposes the use of open source software without considering

the risks this carries to security, warranty, and possible violation of the inte-

llectual property rights of third parties.

It erroneously assumes that open source software is free software, that is, without

cost, and therefore arrives at incorrect conclusions about money saved by the

State. It has no cost-benefit analysis to back up this assumption.

It is wrong to think that open source software is free. Research by the Gartner

Group (an important market researcher in the technology world, well-known

worldwide) has shown that the cost of software acquisition (operating system

and applications) is only 8% of the total cost of ownership that enterprises

and organizations must face as a consequence of the rational and productive

use of technology. The other 92% is costs of installation, training, support,

maintenance, management, and downtime.

One of the arguments supporting your proposal is the supposed cheapness of

open source software when compared to commercial software, without consi-

dering the possibility of volume licensing models. The State can really benefit

from these, as other countries have.

Additionally, the approach chosen by your project (i) is clearly more expensive

because of the high costs of migration; (ii) risks loss of interoperability among

information systems, both inside the State and between the State and the pri-

vate sector, due to the many different distributions of open source software

on the market.

In most cases, open source software does not offer adequate levels of service

to achieve better productivity by its users, nor does it offer warranties from

well-known manufacturers. These things have caused many public entities to

go back on their decisions to use open source software; they are now using

commercial software in its place.

This project discourages creativity in the Peruvian software industry, which

sells USD 40 million worth of goods every year, USD 4 million of that expor-

ted (10th place in the ranking of Peruvian non-traditional exports, more than

handcrafted goods) and is a source of highly skilled jobs. With a law encou-

raging the use of open source software, programmers lose their intellectual

property rights and their most important source of remuneration.

© FUOC • P07/M2101/02710 42 Appendixes

Since open source software can be freely distributed, it cannot make any mo-

ney for its developers by exportation. In this way, it weakens the multiplier

effect of software sales to other countries and stunts the growth of this local

industry, which the State should be stimulating.

In the forum, the importance of the use of open source software in education

was discussed, without commenting on the complete failure of this initiative

in countries like Mexico. There, the same State officials who supported the

project now say that open source software did not provide a learning experi-

ence to children in schools, adequate levels of training were not available na-

tionwide, inadequate support for the platform was provided, and the software

was not integrated well enough with existing school computer systems.

If open source software fulfils all the requirements of State entities, why should

a law be needed to adopt its use? Shouldn't the market freely choose which

products provide more benefits and value?

D.4.2.�Reply�from�Congressman�Villanueva

First of all, I thank you for your letter of March 25, 2002 in which you state

the official position of Microsoft relative to Bill Number 1609, Free Software

in Public Administration, which is indubitably inspired by the desire for Peru

to find a suitable place in the global technological context. In the same spirit,

and convinced that we will find the best solutions through an exchange of

clear and open ideas, I will take this opportunity to reply to the commentaries

included in your letter.

While acknowledging that opinions such as yours constitute a significant con-

tribution, it would have been even more worthwhile for me if, rather than

formulating objections of a general nature (which we will analyse in detail

later) you had gathered solid arguments for the advantages that proprietary

software could bring to the Peruvian State, and to its citizens in general, since

this would have allowed a more enlightening exchange in respect of each of

our positions.

With the aim of creating an orderly debate, we will assume that what you call

open source software is what the bill defines as free software, since there exists

software for which the source code is distributed together with the program-

me, but which does not fall within the definition established by the Bill; and

that what you call commercial software is what the Bill defines as proprietary or

non-free, given that there exists free software which is sold in the market for

a price like any other good or service.

© FUOC • P07/M2101/02710 43 Appendixes

It is also necessary to make it clear that the aim of the Bill we are discussing is

not directly related to the amount of direct savings that can be made by using

free software in state institutions. That is in any case a marginal aggregate

value, but in no way is it the chief focus of the bill. The basic principles which

inspire the Bill are linked to the basic guarantees of a state of law, such as:

• free access to public information by the citizen,

• permanence of public data,

• security of the State and citizens.

To guarantee the citizens' free access to public information, it is essential that

the coding of the data isn't tied to a sole provider. The use of standard and

open formats gives a guarantee of this free access, if necessary through the

creation of compatible free software.

To guarantee the permanence of public data, it is necessary that the usability

and maintenance of the software does not depend on the goodwill of the

suppliers, or on the monopoly conditions imposed by them. For this reason

the State needs systems the development of which can be guaranteed due to

the availability of the source code.

To guarantee national security or the security of the State, it is indispensable

to be able to rely on systems without elements which allow control from a

distance or the undesired transmission of information to third parties. There-

fore, systems with source code freely accessible to the public are required to

allow their inspection by the State itself, by the citizens, and by a large num-

ber of independent experts throughout the world. Our proposal brings further

security, since the knowledge of the source code will eliminate the growing

number of programs with spy code.

In the same way, our proposal strengthens the security of the citizens, both

in their role as legitimate owners of information managed by the state, and

in their role as consumers; in this second case, by allowing the growth of a

widespread availability of free software not containing spy code able to put at

risk privacy and individual freedoms.

In this sense, the Bill is limited to establishing the conditions under which

the state bodies will obtain software in the future, that is, in a way compatible

with these basic principles.

From reading the Bill it will be clear that once passed:

• the law does not forbid the production of proprietary software

© FUOC • P07/M2101/02710 44 Appendixes

• the law does not forbid the sale of proprietary software

• the law does not specify which concrete software to use

• the law does not dictate the supplier from whom software will be bought

• the law does not limit the terms under which a software product can be

licensed.

What the Bill does express clearly, is that, for software to be acceptable for

the State it is not enough that it is technically capable of fulfilling a task, but

that further the contractual conditions must satisfy a series of requirements

regarding the license, without which the State cannot guarantee the citizen

adequate processing of his data, watching over its integrity, confidentiality,

and accessibility throughout time, as these are very critical aspects for its nor-

mal functioning.

We agree, Mr. González, that information and communication technology

have a significant impact on the quality of life of the citizens (whether it be

positive or negative). We surely also agree that the basic values I have pointed

out above are fundamental in a democratic state like Peru. So we are very

interested to know of any other way of guaranteeing these principles, other

than through the use of free software in the terms defined by the Bill.

As for the observations you have made, we will now go on to analyse them

in detail:

Firstly, you point out that: "1. "Your proposal mandates that every public or-

ganization exclusively use free software, also known as open source software.

This is something which transgresses the principles of equality before the law,

of no discrimination, of free private initiative, and of freedom of industry and

contracting, which are protected by the Constitution."

This understanding is in error. The Bill in no way affects the rights you list;

it limits itself entirely to establishing conditions for the use of software on

the part of state institutions, without in any way meddling in private sector

transactions. It is a well established principle that the State does not enjoy the

wide spectrum of contractual freedom of the private sector, as it is limited in

its actions precisely by the requirement for transparency of public acts; and

in this sense, the preservation of the greater common interest must prevail

when legislating on the matter.

© FUOC • P07/M2101/02710 45 Appendixes

The Bill protects equality under the law, since no natural or legal entity is ex-

cluded from the right of offering these goods to the State under the conditi-

ons defined in the Bill and without more limitations than those established

by the Law of State Contracts and Purchasing (TUO by Supreme Decree No.

012-2001-PCM).

The Bill does not introduce any discrimination whatever, since it only esta-

blishes how the goods have to be provided (which is a state power) and not who

has to provide them (which would effectively be discriminatory, if restrictions

based on national origin, race religion, ideology, sexual preference etc. were

imposed). On the contrary, the Bill is decidedly anti-discriminatory. This is so

because by defining with no room for doubt the conditions for the provision

of software, it prevents state bodies from using software which has a license

including discriminatory conditions.

It should be obvious from the preceding two paragraphs that the Bill does not

harm free private enterprise, since the latter can always choose under what

conditions it will produce software; some of these will be acceptable to the

State, and others will not be since they contradict the guarantee of the basic

principles listed above. This free initiative is of course compatible with the

freedom of industry and freedom of contract (in the limited form in which the

State can exercise the latter). Any private subject can produce software under

the conditions which the State requires, or can refrain from doing so. Nobody

is forced to adopt a model of production, but if they wish to provide software

to the State, they must provide the mechanisms which guarantee the basic

principles, and which are those described in the Bill.

By way of an example: nothing in the text of the Bill would prevent your

company offering the State bodies an office suite, under the conditions defi-

ned in the Bill and setting the price that you consider satisfactory. If you did

not, it would not be due to restrictions imposed by the law, but to business

decisions relative to the method of commercializing your products, decisions

with which the State is not involved.

To continue, you note that: "2. "Your proposal, by making mandatory the use

of open source software, establishes discriminatory and non-competitive tre-

atment in contracting and acquisitions by public organizations...".

This statement is just a reiteration of the previous one, and so the response

can be found above. However, let us concern ourselves for a moment with

your comment regarding "non-competitive. practices."

Of course, in defining any kind of purchase, the buyer sets conditions which

relate to the proposed use of the good or service. From the start, this excludes

certain manufacturers from the possibility of competing, but does not exclude

them a priori, but rather based on a series of principles determined by the au-

© FUOC • P07/M2101/02710 46 Appendixes

tonomous will of the purchaser, and so the process takes place in conforman-

ce with the law. And in the Bill it is established that no-one is excluded from

competing as far as he guarantees the fulfilment of the basic principles.

Furthermore, the Bill stimulates competition, since it tends to generate a sup-

ply of software with better conditions of usability, and to better existing work,

in a model of continuous improvement.

On the other hand, the central aspect of competition is the chance to provide

better choices to the consumer. Now, it is impossible to ignore the fact that

marketing does not play a neutral role when the product is offered on the

market (since accepting the opposite would lead one to suppose that firms'

expenses in marketing lack any sense), and that therefore a significant expense

under this heading can influence the decisions of the purchaser. This influence

of marketing is in large measure reduced by the bill that we are backing, since

the choice within the framework proposed is based on the technical merits of

the product and not on the effort put into commercialization by the producer;

in this sense, competition is increased, since the smallest software producer

can compete on equal terms with the most powerful corporations.

It is necessary to stress that there is no position more anti-competitive than

that of the big software producers, which frequently abuse their dominant

position, since in innumerable cases they propose as a solution to problems

raised by users: "update your software to the new version" (at the user's expen-

se, naturally); furthermore, it is common to find arbitrary cessation of techni-

cal help for products, which, in the provider's judgement alone, are old; and

so, to receive any kind of technical assistance, the user finds himself forced

to migrate to new versions (with non-trivial costs, especially as changes in

hardware platform are often involved). And as the whole infrastructure is ba-

sed on proprietary data formats, the user stays trapped in the need to continue

using products from the same supplier, or to make the huge effort to change

to another environment (probably also proprietary).

You add: "3. "By forcing the State to favour a business model supporting ex-

clusively open source software, your proposal will discourage local and inter-

national software manufacturers who make real and important investments

in the country, create a significant number of direct and indirect jobs, and

thus contribute to the national income. In contrast, open source software de-

velopment always has a lesser benefit to the economy, since it mainly creates

jobs in the service sector."

I do not agree with your statement. Partly because of what you yourself point

out in paragraph 6 of your letter, regarding the relative weight of services in

the context of software use. This contradiction alone would invalidate your

© FUOC • P07/M2101/02710 47 Appendixes

position. The service model, adopted by a large number of companies in the

software industry, is much larger in economic terms, and with a tendency to

increase, than the licensing of programs.

On the other hand, the private sector of the economy has the widest possible

freedom to choose the economic model which best suits its interests, even if

this freedom of choice is often obscured subliminally by the disproportionate

expenditure on marketing by the producers of proprietary software.

In addition, a reading of your opinion would lead to the conclusion that the

State market is crucial and essential for the proprietary software industry, to

such a point that the choice made by the State in this bill would completely

eliminate the market for these firms. If that is true, we can deduce that the

State must be subsidising the proprietary software industry. In the unlikely

event that this were true, the State would have the right to apply the subsidies

in the area it considers of greatest social value; it is undeniable, in this impro-

bable hypothesis, that if the State decided to subsidize software, it would have

to do so choosing the free over the proprietary, considering its social effect

and the rational use of taxpayer's money.

In respect of the jobs generated by proprietary software in countries like ours,

these mainly concern technical tasks of little aggregate value; at the local le-

vel, the technicians who provide support for proprietary software produced

by transnational companies do not have the possibility of fixing bugs, not ne-

cessarily for lack of technical capability or of talent, but because they do not

have access to the source code to fix it. With free software one creates more

technically qualified employment and a framework of free competence where

success is only tied to the ability to offer good technical support and quality

of service, one stimulates the market, and one increases the shared fund of

knowledge, opening up alternatives to generate services of greater total value

and a higher quality level, to the benefit of all involved: producers, service

organizations, and consumers.

It is a common phenomenon in developing countries that local software in-

dustries obtain the majority of their takings in the service sector, or in the

creation of ad hoc software. Therefore, any negative impact that the applica-

tion of the Bill might have in this sector will be more than compensated by

a growth in demand for services (as long as these are carried out to high qua-

lity standards). If the transnational software companies decide not to compete

under these new rules of the game, it is likely that they will undergo some

decrease in takings in terms of payment for licences; however, considering

that these firms continue to allege that much of the software used by the Sta-

te has been illegally copied, one can see that the impact will not be very se-

rious. Certainly, in any case their fortune will be determined by market laws,

changes in which cannot be avoided; many firms traditionally associated with

© FUOC • P07/M2101/02710 48 Appendixes

proprietary software have already set out on the road (supported by copious

expense) of providing services associated with free software, which shows that

the models are not mutually exclusive.

With this bill the State is deciding that it needs to preserve certain fundamen-

tal values. And it is deciding this based on its sovereign power, without affec-

ting any of the constitutional guarantees. If these values could be guarante-

ed without having to choose a particular economic model, the effects of the

law would be even more beneficial. In any case, it should be clear that the

State does not choose an economic model; if it happens that there only exists

one economic model capable of providing software which provides the basic

guarantee of these principles, this is because of historical circumstances, not

because of an arbitrary choice of a given model.

Your letter continues: "4. "Your proposal imposes the use of open source

software without considering the risks this carries to security, warranty, and

possible violation of the intellectual property rights of third parties."

Alluding in an abstract way to "the risks this carries ", without specifically

mentioning a single one of these supposed dangers, shows at the least some

lack of knowledge of the topic. So, allow me to enlighten you on these points.

On security:

National security has already been mentioned in general terms in the initial

discussion of the basic principles of the bill. In more specific terms, relative

to the security of the software itself, it is well known that all software (whet-

her proprietary or free) contains errors or bugs (in programmers' slang). But

it is also well-known that the bugs in free software are fewer, and are fixed

much more quickly, than in proprietary software. It is not in vain that nume-

rous public bodies responsible for the IT security of state systems in developed

countries require the use of free software for the same conditions of security

and efficiency.

What is impossible to prove is that proprietary software is more secure than

free, without the public and open inspection of the scientific community and

users in general. This demonstration is impossible because the model of pro-

prietary software itself prevents this analysis, so that any guarantee of security

is based only on promises of good intentions (biased, by any reckoning) made

by the producer itself, or its contractors.

It should be remembered that in many cases, the licensing conditions include

de non-disclosure clauses which prevent the user from publicly revealing secu-

rity flaws found in the licensed proprietary product.

In respect of the guarantee:

© FUOC • P07/M2101/02710 49 Appendixes

As you know perfectly well, or could find out by reading the End User License

Agreement of the products you license, in the great majority of cases the gua-

rantees are limited to replacement of the storage medium in case of defects,

but in no case is compensation given for direct or indirect damages, loss of

profits, etc... If as a result of a security bug in one of your products, not fixed

in time by yourselves, an attacker managed to compromise crucial State sys-

tems, what guarantees, reparations and compensation would your company

make in accordance with your licensing conditions? The guarantees of propri-

etary software, inasmuch as programs are delivered as is, that is, in the state

in which they are, with no additional responsibility of the provider in respect

of function, in no way differ from those normal with free software.

On Intellectual Property:

Questions of intellectual property fall outside the scope of this bill, since they

are covered by specific other laws. The model of free software in no way im-

plies ignorance of these laws, and in fact the great majority of free software

is covered by copyright. In reality, the inclusion of this question in your ob-

servations shows your confusion in respect of the legal framework in which

free software is developed. The inclusion of the intellectual property of others

in works claimed as one's own is not a practice that has been noted in the

free software community; whereas, unfortunately, it has been in the area of

proprietary software. As an example, the condemnation by the Commercial

Court of Nanterre, France, on 27th September 2001 of Microsoft Corp. to a

penalty of 3 million francs in damages and interest, for violation of intellec-

tual property (piracy, to use the unfortunate term that your firm commonly

uses in its publicity).

You go on to say that: "5. "It erroneously assumes that open source software is

free software, that is, without cost, and therefore arrives at incorrect conclu-

sions about money saved by the State. It has no cost-benefit analysis to back

up this assumption."

This observation is wrong; in principle, freedom and lack of cost are ortho-

gonal concepts: there is software which is proprietary and charged for (for

example, MS Office), software which is proprietary and free of charge (MS In-

ternet Explorer), software which is free and charged for (Red Hat, SuSE etc.,

Gnu/Linux distributions), software which is free and not charged for (Apache,

OpenOffice, Mozilla), and even software which can be licensed in a range of

combinations (MySQL).

Certainly free software is not necessarily free of charge. And the text of the bill

does not state that it has to be so, as you will have noted after reading it. The

definitions included in the Bill state clearly what should be considered free

software, at no point referring to freedom from charges. Although the possi-

bility of savings in payments for proprietary software licenses are mentioned,

the foundations of the bill clearly refer to the fundamental guarantees to be

© FUOC • P07/M2101/02710 50 Appendixes

preserved and to the stimulus to local technological development. Given that

a democratic State must support these principles, it has no other choice than

to use software with publicly available source code, and to exchange informa-

tion only in standard formats.

If the State does not use software with these characteristics, it will be weake-

ning basic republican principles. Luckily, free software also implies lower total

costs; however, even given the hypothesis (easily disproved) that it was more

expensive than proprietary software, the simple existence of an effective free

software tool for a particular IT function would oblige the State to use it; not

by command of this Bill, but because of the basic principles we enumerated at

the start, and which arise from the very essence of the lawful democratic State.

You continue: "6. It is wrong to think that open source software is free. Rese-

arch by the Gartner Group (an important market researcher in the technology

world, well-known worldwide) has shown that the cost of software acquisition

(operating system and applications) is only 8% of the total cost of ownership

that enterprises and organizations must face as a consequence of the rational

and productive use of technology. "The other 92% consists of: installation,

training, support, maintenance, management and administration, and down-

time."

This argument repeats that already given in paragraph 5 and partly contra-

dicts paragraph 3. For the sake of brevity we refer to the comments on those

paragraphs. However, allow me to point out that your conclusion is logically

false: even if according to Gartner Group the cost of software is on average

only 8% of the total cost of use, this does not in any way deny the existence

of software which is free of charge, that is, with a licensing cost of zero.

In addition, in this paragraph you correctly point out that the service com-

ponents and losses due to down time make up the largest part of the total

cost of software use, which, as you will note, contradicts your statement re-

garding the small value of services suggested in paragraph 3. Now the use of

free software contributes significantly to reduce the remaining life-cycle costs.

This reduction in the costs of installation, support etc. can be noted in several

areas: in the first place, the competitive service model of free software, support

and maintenance for which can be freely contracted out to a range of suppliers

competing on the grounds of quality and low cost (this is true for installation,

enabling, and support, and in large part for maintenance). In the second pla-

ce, due to the reproductive characteristics of the model, maintenance carried

out for an application is easily replicable, without incurring large costs (that

is, without paying more than once for the same thing) since modifications, if

one wishes, can be incorporated in the common fund of knowledge. Thirdly,

the huge costs caused by non-functioning software (blue screens of death, mali-

cious code such as virus, worms, and trojans, exceptions, general protection

© FUOC • P07/M2101/02710 51 Appendixes

faults and other well-known problems) are reduced considerably by using mo-

re stable software. And it is well-known that one of the most notable virtues

of free software is its stability.

You further state that: "7. "One of the arguments supporting your proposal is

the supposed cheapness of open source software when compared to commer-

cial software, without considering the possibility of volume licensing models,

which can be highly advantageous for the State, as has happened in other

countries."

I have already pointed out that what is in question is not the cost of the softwa-

re but the principles of freedom of information, accessibility, and security.

These arguments have been covered extensively in the preceding paragraphs

to which I would refer you.

On the other hand, there certainly exist types of volume licensing (although

unfortunately proprietary software does not satisfy the basic principles). But

as you correctly pointed out in the immediately preceding paragraph of your

setter, they only manage to reduce the impact of a component which makes

up no more than 8% of the total.

You continue: "8. "Additionally, the approach chosen by your project (i) is cle-

arly more expensive because of the high costs of migration; (ii) risks loss of

interoperability among information systems, both inside the State and betwe-

en the State and the public sector, due to the many different distributions of

open source software on the market."

Let us analyze your statement in two parts. Your first argument, that migration

implies high costs, is in reality an argument in favour of the Bill. Because the

more time goes by, the more difficult migration to another technology will

become; and at the same time, the security risks associated with proprietary

software will continue to increase. In this way, the use of proprietary systems

and formats will make the State ever more dependent on specific suppliers.

On the contrary, once a policy of using free software has been established

(which certainly, does imply some cost) then on the contrary migration from

one system to another becomes very simple, since all data is stored in open

formats. On the other hand, migration to an open software context implies

no more costs than migration between two different proprietary software con-

texts, which invalidates your argument completely.

The second argument refers to "loss of interoperability among information

systems, both inside the State and between the State and the private sector".

This statement implies a certain lack of knowledge of the way in which free

software is built, which does not maximize the dependence of the user on a

particular platform, as normally happens in the realm of proprietary softwa-

re. Even when there are multiple free software distributions, and numerous

programs which can be used for the same function, interoperability is guaran-

© FUOC • P07/M2101/02710 52 Appendixes

teed as much by the use of standard formats, as required by the bill, as by

the possibility of creating interoperable software given the availability of the

source code.

You then say that: "9. "In most cases, open source software does not offer ade-

quate levels of service to achieve better productivity by its users, nor does it

offer warranties from well-known manufacturers. These things have caused

many public entities to go back on their decisions to use open source software;

they are now using commercial software in its place."

This observation is without foundation. In respect of the guarantee, your ar-

gument was rebutted in the response to paragraph 4. In respect of support

services, it is possible to use free software without them (just as also happens

with proprietary software), but anyone who does need them can obtain sup-

port separately, whether from local firms or from international corporations,

again just as in the case of proprietary software.

On the other hand, it would contribute greatly to our analysis if you could

inform us about free software projects established in public bodies which have

already been abandoned in favour of proprietary software. We know of a good

number of cases where the opposite has taken place, but do not know of any

where what you describe has taken place.

You continue by observing that: "10. "This project discourages creativity in

the Peruvian software industry, which sells USD 40 million worth of goods

every year, USD 4 million of that exported (10th place in the ranking of Peru-

vian non traditional exports, more than handcrafted goods) and is a source of

highly skilled jobs. With a law encouraging the use of open source software,

programmers lose their intellectual property rights and their most important

source of remuneration."

It is clear enough that nobody is forced to commercialize their code as free

software. The only thing to take into account is that if it is not free software,

it cannot be sold to the public sector. This is not in any case the main market

for the national software industry. We covered some questions referring to the

influence of the Bill on the generation of employment which would be both

highly technically qualified and in better conditions for competition above,

so it seems unnecessary to insist on this point.

What follows in your statement is incorrect. On the one hand, no author of

free software loses his intellectual property rights, unless he expressly wishes to

place his work in the public domain. The free software movement has always

been very respectful of intellectual property, and has generated widespread

public recognition of authors. Names like those of Richard Stallman, Linus

Torvalds, Guido van Rossum, Larry Wall, Miguel de Icaza, Andrew Tridgell,

Theo de Raadt, Andrea Arcangeli, Bruce Perens, Darren Reed, Alan Cox, Eric

Raymond, and many others, are recognized world-wide for their contributi-

© FUOC • P07/M2101/02710 53 Appendixes

ons to the development of software that is used today by millions of people

throughout the world, whilst there are many material authors of excellent pi-

eces of proprietary software who remain anonymous. On the other hand, to

say that the rewards for authors rights make up the main source of payment

of Peruvian programmers is in any case a guess, in particular since there is no

proof to this effect, nor a demonstration of how the use of free software by

the State would influence these payments.

You go on to say that: "11. Since open source software can be freely distri-

buted, it cannot make any money for its developers by exportation. "Since

open source software can be freely distributed, it cannot make any money for

its developers by exportation. In this way, it weakens the multiplier effect of

software sales to other countries and stunts the growth of this local industry,

which the State should be stimulating."

This statement shows once again complete ignorance of the mechanisms of

and market for free software. It tries to claim that the market of sale of non- ex-

clusive rights for use (sale of licences) is the only possible one for the software

industry, when you yourself pointed out several paragraphs above that it is

not even the most important one. The incentives that the bill offers for the

growth of a supply of better qualified professionals, together with the increase

in experience that working on a large scale with free software within the State

will bring for Peruvian technicians, will place them in a highly competitive

position to offer their services abroad.

You then state that: "12. In the forum, the importance of the use of open sour-

ce software in education was discussed, without commenting on the complete

failure of this initiative in countries like Mexico. There, the same State officials

who supported the project now say that open source software did not provide

a learning experience to children in schools, adequate levels of training were

not available nationwide, inadequate support for the platform was provided,

and the software was not integrated well enough with existing school com-

puter systems."

In fact Mexico has gone into reverse with the Red Escolar (Schools Network)

project. This is due precisely to the fact that the driving forces behind the Me-

xican project used license costs as their main argument, instead of the other

reasons specified in our project, which are far more essential. Because of this

conceptual mistake, and as a result of the lack of effective support from the

SEP (Secretary of State for Public Education), the assumption was made that

to implant free software in schools it would be enough to drop their software

budget and send them a CD ROM with Gnu/Linux instead. Of course this fai-

led, and it couldn't have been otherwise, just as school laboratories fail when

they use proprietary software and have no budget for implementation and

maintenance. That's exactly why our bill is not limited to making the use of

© FUOC • P07/M2101/02710 54 Appendixes

free software mandatory, but recognizes the need to create a viable migration

plan, in which the State undertakes the technical transition in an orderly way

in order to then enjoy the advantages of free software.

You end with a rhetorical question: "13. If open source software fulfils all the

requirements of State entities, why should a law be needed to adopt its use?

"Shouldn't the market freely choose which products provide more benefits

and value?"

We agree that in the private sector of the economy, it must be the market that

decides which products to use, and no state interference is permissible there.

However, in the case of the public sector, the reasoning is not the same: as

we have already established, the state archives, handles, and transmits infor-

mation which does not belong to it, but which is entrusted to it by citizens,

who have no alternative under the rule of law. As a counterpart to this legal

requirement, the State must take extreme measures to safeguard the integrity,

confidentiality, and accessibility of this information. The use of proprietary

software raises serious doubts as to whether these requirements can be fulfi-

lled, lacks conclusive evidence in this respect, and so is not suitable for use

in the public sector.

The need for a law is based, firstly, on the realization of the fundamental prin-

ciples listed above in the specific area of software; secondly, on the fact that

the State is not an ideal homogeneous entity, but made up of multiple bodies

with varying degrees of autonomy in decision making. Given that it is inap-

propriate to use proprietary software, the fact of establishing these rules in

law will prevent the personal discretion of any state employee from putting at

risk the information which belongs to citizens. And above all, because it cons-

titutes an up-to-date reaffirmation in relation to the means of management

and communication of information used today, it is based on the republican

principle of openness to the public.

In conformance with this universally accepted principle, the citizen has the

right to know all information held by the State and not covered by well-foun-

ded declarations of secrecy based on law. Now, software deals with informati-

on and is itself information. Information in a special form, capable of being

interpreted by a machine in order to execute actions, but crucial information

all the same because the citizen has a legitimate right to know, for example,

how his vote is computed or his taxes calculated. And for that he must have

free access to the source code and be able to prove to his satisfaction the pro-

grams used for electoral computations or calculation of his taxes.

D.5.�Decree�of�Measures�to�Promote�the�Knowledge�Society�in�Andalucía

Below are some of the articles, related to free software, of the abovementioned

Decree on Measures to Encourage the Knowledge Society in Andalucía [99].

© FUOC • P07/M2101/02710 55 Appendixes

• Article 11. Educational materials in computer format.

1. All public teaching centres will have educational materials and program-

mes in computerised format, preferably based on free software. In any ca-

se, the centres will receive these formats from the Regional Government

of Andalucía.

2. Likewise, the teachers will receive incentives for using computerised

curricular materials and programmes or using Internet, especially with re-

gard to developments made using free software.

• Article 31. Free software.

1. When purchasing computer equipment that will be used in public te-

aching centres for educational activities, it should be ensured that all the

hardware is compatible with operating systems based on free software.

Computers will come preinstalled with all the free software that is neces-

sary for the specific purposes for which they are intended.

2. The computer equipment that the Regional Government of Andalucía

provides for public access to Internet will be based on free software pro-

ducts.

3. The Regional Government of Andalucía will foster the dissemination

and the personal, domestic and educational use of free software. For these

purposes, an online advice service will be established for the installation

and use of these types of products.

• Article 49. Objective.

1. There will be subsidies for the development of innovative projects that

facilitate the integration of IT and communications in professional and

occupational training.

2. These projects will follow one of the following models:

a) Preparation of materials and contents of professional and occupational

training for their use and dissemination by Internet, especially with regard

to the developments made using free software.

b) Training initiatives using innovative methods, such as long-distance le-

arning and methods whereby the students only need to attend the courses

personally on certain occasions.

© FUOC • P07/M2101/02710 56 Appendixes

5. Appendix E. Creative Commons'
Attribution-ShareAlike

Version 3.0 Unported

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES

NOT PROVIDE LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DO-

ES NOT CREATE AN ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COM-

MONS PROVIDES THIS INFORMATION ON AN "AS-IS" BASIS. CREATIVE

COMMONS MAKES NO WARRANTIES REGARDING THE INFORMATION

PROVIDED, AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM

ITS USE.

1.�License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS

CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK

IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE

OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR

COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU AC-

CEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE

EXTENT THIS LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LI-

CENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATI-

ON OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1.�Definitions

a) "Adaptation" means a work based upon the Work, or upon the Work

and other pre-existing works, such as a translation, adaptation, derivati-

ve work, arrangement of music or other alterations of a literary or artis-

tic work, or phonogram or performance and includes cinematographic

adaptations or any other form in which the Work may be recast, trans-

formed, or adapted including in any form recognizably derived from the

original, except that a work that constitutes a Collection will not be con-

sidered an Adaptation for the purpose of this License. For the avoidance

of doubt, where the Work is a musical work, performance or phonogram,

the synchronization of the Work in timed-relation with a moving image

("synching") will be considered an Adaptation for the purpose of this Li-

cense.

b) "Collection" means a collection of literary or artistic works, such as ency-

clopedias and anthologies, or performances, phonograms or broadcasts,

© FUOC • P07/M2101/02710 57 Appendixes

or other works or subject matter other than works listed in Section 1(f) be-

low, which, by reason of the selection and arrangement of their contents,

constitute intellectual creations, in which the Work is included in its en-

tirety in unmodified form along with one or more other contributions,

each constituting separate and independent works in themselves, which

together are assembled into a collective whole. A work that constitutes a

Collection will not be considered an Adaptation (as defined below) for the

purposes of this License.

c) "Creative�Commons�Compatible�License" means a license that is listed at

http://creativecommons.org/compatiblelicenses that has been approved

by Creative Commons as being essentially equivalent to this License, in-

cluding, at a minimum, because that license: (i) contains terms that have

the same purpose, meaning and effect as the License Elements of this Li-

cense; and, (ii) explicitly permits the relicensing of adaptations of works

made available under that license under this License or a Creative Com-

mons jurisdiction license with the same License Elements as this License.

d) "Distribute" means to make available to the public the original and copies

of the Work or Adaptation, as appropriate, through sale or other transfer

of ownership.

e) "License�Elements" means the following high-level license attributes as

selected by Licensor and indicated in the title of this License: Attribution,

ShareAlike.

f) "Licensor" means the individual, individuals, entity or entities that

offer(s) the Work under the terms of this License.

g) "Original�Author" means, in the case of a literary or artistic work, the

individual, individuals, entity or entities who created the Work or if no

individual or entity can be identified, the publisher; and in addition (i) in

the case of a performance the actors, singers, musicians, dancers, and ot-

her persons who act, sing, deliver, declaim, play in, interpret or otherwise

perform literary or artistic works or expressions of folklore; (ii) in the case

of a phonogram the producer being the person or legal entity who first

fixes the sounds of a performance or other sounds; and, (iii) in the case of

broadcasts, the organization that transmits the broadcast.

h) "Work" means the literary and/or artistic work offered under the terms of

this License including without limitation any production in the literary,

scientific and artistic domain, whatever may be the mode or form of its

expression including digital form, such as a book, pamphlet and other

writing; a lecture, address, sermon or other work of the same nature; a

dramatic or dramatico-musical work; a choreographic work or entertain-

ment in dumb show; a musical composition with or without words; a ci-

nematographic work to which are assimilated works expressed by a pro-

© FUOC • P07/M2101/02710 58 Appendixes

cess analogous to cinematography; a work of drawing, painting, architec-

ture, sculpture, engraving or lithography; a photographic work to which

are assimilated works expressed by a process analogous to photography; a

work of applied art; an illustration, map, plan, sketch or three-dimensio-

nal work relative to geography, topography, architecture or science; a per-

formance; a broadcast; a phonogram; a compilation of data to the extent

it is protected as a copyrightable work; or a work performed by a variety

or circus performer to the extent it is not otherwise considered a literary

or artistic work.

i) "You" means an individual or entity exercising rights under this License

who has not previously violated the terms of this License with respect to

the Work, or who has received express permission from the Licensor to

exercise rights under this License despite a previous violation.

j) "Publicly�Perform" means to perform public recitations of the Work and

to communicate to the public those public recitations, by any means or

process, including by wire or wireless means or public digital performan-

ces; to make available to the public Works in such a way that members of

the public may access these Works from a place and at a place individu-

ally chosen by them; to perform the Work to the public by any means or

process and the communication to the public of the performances of the

Work, including by public digital performance; to broadcast and rebroad-

cast the Work by any means including signs, sounds or images.

k) "Reproduce" means to make copies of the Work by any means including

without limitation by sound or visual recordings and the right of fixation

and reproducing fixations of the Work, including storage of a protected

performance or phonogram in digital form or other electronic medium.

2.�Fair�Dealing�Rights. Nothing in this License is intended to reduce, limit,

or restrict any uses free from copyright or rights arising from limitations or

exceptions that are provided for in connection with the copyright protection

under copyright law or other applicable laws.

3.�License�Grant. Subject to the terms and conditions of this License, Licensor

hereby grants You a worldwide, royalty-free, non-exclusive, perpetual (for the

duration of the applicable copyright) license to exercise the rights in the Work

as stated below:

a) to Reproduce the Work, to incorporate the Work into one or more Collec-

tions, and to Reproduce the Work as incorporated in the Collections;

b) to create and Reproduce Adaptations provided that any such Adaptation,

including any translation in any medium, takes reasonable steps to clearly

label, demarcate or otherwise identify that changes were made to the ori-

ginal Work. For example, a translation could be marked "The original work

© FUOC • P07/M2101/02710 59 Appendixes

was translated from English to Spanish," or a modification could indicate

"The original work has been modified.";

c) to Distribute and Publicly Perform the Work including as incorporated in

Collections; and,

d) to Distribute and Publicly Perform Adaptations.

e) For the avoidance of doubt:

a) Non-waivable�Compulsory�License�Schemes. In those jurisdictions

in which the right to collect royalties through any statutory or com-

pulsory licensing scheme cannot be waived, the Licensor reserves the

exclusive right to collect such royalties for any exercise by You of the

rights granted under this License;

b) Waivable� Compulsory� License� Schemes. In those jurisdictions in

which the right to collect royalties through any statutory or compul-

sory licensing scheme can be waived, the Licensor waives the exclusi-

ve right to collect such royalties for any exercise by You of the rights

granted under this License; and,

c) Voluntary�License�Schemes. The Licensor waives the right to collect

royalties, whether individually or, in the event that the Licensor is a

member of a collecting society that administers voluntary licensing

schemes, via that society, from any exercise by You of the rights gran-

ted under this License.

The above rights may be exercised in all media and formats whether now

known or hereafter devised. The above rights include the right to make such

modifications as are technically necessary to exercise the rights in other media

and formats. Subject to Section 8(f), all rights not expressly granted by Licen-

sor are hereby reserved.

4.�Restrictions. The license granted in Section 3 above is expressly made sub-

ject to and limited by the following restrictions:

a) You may Distribute or Publicly Perform the Work only under the terms of

this License. You must include a copy of, or the Uniform Resource Identi-

fier (URI) for, this License with every copy of the Work You Distribute or

Publicly Perform. You may not offer or impose any terms on the Work that

restrict the terms of this License or the ability of the recipient of the Work

to exercise the rights granted to that recipient under the terms of the Li-

cense. You may not sublicense the Work. You must keep intact all notices

that refer to this License and to the disclaimer of warranties with every

copy of the Work You Distribute or Publicly Perform. When You Distribute

or Publicly Perform the Work, You may not impose any effective techno-

logical measures on the Work that restrict the ability of a recipient of the

© FUOC • P07/M2101/02710 60 Appendixes

Work from You to exercise the rights granted to that recipient under the

terms of the License. This Section 4(a) applies to the Work as incorporated

in a Collection, but this does not require the Collection apart from the

Work itself to be made subject to the terms of this License. If You create a

Collection, upon notice from any Licensor You must, to the extent prac-

ticable, remove from the Collection any credit as required by Section 4(c),

as requested. If You create an Adaptation, upon notice from any Licensor

You must, to the extent practicable, remove from the Adaptation any cre-

dit as required by Section 4(c), as requested.

b) You may Distribute or Publicly Perform an Adaptation only under the

terms of: (i) this License; (ii) a later version of this License with the sa-

me License Elements as this License; (iii) a Creative Commons jurisdicti-

on license (either this or a later license version) that contains the same

License Elements as this License (e.g., Attribution-ShareAlike 3.0 US)); (iv)

a Creative Commons Compatible License. If you license the Adaptation

under one of the licenses mentioned in (iv), you must comply with the

terms of that license. If you license the Adaptation under the terms of

any of the licenses mentioned in (i), (ii) or (iii) (the "Applicable License"),

you must comply with the terms of the Applicable License generally and

the following provisions: (I) You must include a copy of, or the URI for,

the Applicable License with every copy of each Adaptation You Distribute

or Publicly Perform; (II) You may not offer or impose any terms on the

Adaptation that restrict the terms of the Applicable License or the ability

of the recipient of the Adaptation to exercise the rights granted to that

recipient under the terms of the Applicable License; (III) You must keep

intact all notices that refer to the Applicable License and to the disclaimer

of warranties with every copy of the Work as included in the Adaptation

You Distribute or Publicly Perform; (IV) when You Distribute or Publicly

Perform the Adaptation, You may not impose any effective technological

measures on the Adaptation that restrict the ability of a recipient of the

Adaptation from You to exercise the rights granted to that recipient un-

der the terms of the Applicable License. This Section 4(b) applies to the

Adaptation as incorporated in a Collection, but this does not require the

Collection apart from the Adaptation itself to be made subject to the terms

of the Applicable License.

c) If You Distribute, or Publicly Perform the Work or any Adaptations or

Collections, You must, unless a request has been made pursuant to Section

4(a), keep intact all copyright notices for the Work and provide, reasona-

ble to the medium or means You are utilizing: (i) the name of the Original

Author (or pseudonym, if applicable) if supplied, and/or if the Original

Author and/or Licensor designate another party or parties (e.g., a sponsor

institute, publishing entity, journal) for attribution ("Attribution Parties")

in Licensor's copyright notice, terms of service or by other reasonable me-

ans, the name of such party or parties; (ii) the title of the Work if suppli-

ed; (iii) to the extent reasonably practicable, the URI, if any, that Licensor

© FUOC • P07/M2101/02710 61 Appendixes

specifies to be associated with the Work, unless such URI does not refer

to the copyright notice or licensing information for the Work; and (iv) ,

consistent with Ssection 3(b), in the case of an Adaptation, a credit iden-

tifying the use of the Work in the Adaptation (e.g., "French translation of

the Work by Original Author," or "Screenplay based on original Work by

Original Author"). The credit required by this Section 4(c) may be imple-

mented in any reasonable manner; provided, however, that in the case of a

Adaptation or Collection, at a minimum such credit will appear, if a credit

for all contributing authors of the Adaptation or Collection appears, then

as part of these credits and in a manner at least as prominent as the credits

for the other contributing authors. For the avoidance of doubt, You may

only use the credit required by this Section for the purpose of attribution

in the manner set out above and, by exercising Your rights under this Li-

cense, You may not implicitly or explicitly assert or imply any connection

with, sponsorship or endorsement by the Original Author, Licensor and/

or Attribution Parties, as appropriate, of You or Your use of the Work, wit-

hout the separate, express prior written permission of the Original Author,

Licensor and/or Attribution Parties.

d) Except as otherwise agreed in writing by the Licensor or as may be ot-

herwise permitted by applicable law, if You Reproduce, Distribute or Pu-

blicly Perform the Work either by itself or as part of any Adaptations or

Collections, You must not distort, mutilate, modify or take other deroga-

tory action in relation to the Work which would be prejudicial to the Ori-

ginal Author's honor or reputation. Licensor agrees that in those jurisdic-

tions (e.g. Japan), in which any exercise of the right granted in Section 3(b)

of this License (the right to make Adaptations) would be deemed to be a

distortion, mutilation, modification or other derogatory action prejudici-

al to the Original Author's honor and reputation, the Licensor will waive

or not assert, as appropriate, this Section, to the fullest extent permitted

by the applicable national law, to enable You to reasonably exercise Your

right under Section 3(b) of this License (right to make Adaptations) but

not otherwise.

5.�Representations,�Warranties�and�Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING,

LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS

OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IM-

PLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION,

WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR

PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER

DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHET-

HER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE

EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT

APPLY TO YOU.

© FUOC • P07/M2101/02710 62 Appendixes

6.�Limitation�on�Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLI-

CABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY

LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNI-

TIVE OR EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE

USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSI-

BILITY OF SUCH DAMAGES.

7.�Termination

a) This License and the rights granted hereunder will terminate automati-

cally upon any breach by You of the terms of this License. Individuals or

entities who have received Adaptations or Collections from You under this

License, however, will not have their licenses terminated provided such

individuals or entities remain in full compliance with those licenses. Sec-

tions 1, 2, 5, 6, 7, and 8 will survive any termination of this License.

b) Subject to the above terms and conditions, the license granted here is

perpetual (for the duration of the applicable copyright in the Work).

Notwithstanding the above, Licensor reserves the right to release the Work

under different license terms or to stop distributing the Work at any time;

provided, however that any such election will not serve to withdraw this

License (or any other license that has been, or is required to be, granted

under the terms of this License), and this License will continue in full for-

ce and effect unless terminated as stated above.

8.�Miscellaneous

a) Each time You Distribute or Publicly Perform the Work or a Collection, the

Licensor offers to the recipient a license to the Work on the same terms

and conditions as the license granted to You under this License.

b) Each time You Distribute or Publicly Perform an Adaptation, Licensor of-

fers to the recipient a license to the original Work on the same terms and

conditions as the license granted to You under this License.

c) If any provision of this License is invalid or unenforceable under applica-

ble law, it shall not affect the validity or enforceability of the remainder

of the terms of this License, and without further action by the parties to

this agreement, such provision shall be reformed to the minimum extent

necessary to make such provision valid and enforceable.

d) No term or provision of this License shall be deemed waived and no breach

consented to unless such waiver or consent shall be in writing and signed

by the party to be charged with such waiver or consent.

e) This License constitutes the entire agreement between the parties with res-

pect to the Work licensed here. There are no understandings, agreements

© FUOC • P07/M2101/02710 63 Appendixes

or representations with respect to the Work not specified here. Licensor

shall not be bound by any additional provisions that may appear in any

communication from You. This License may not be modified without the

mutual written agreement of the Licensor and You.

f) The rights granted under, and the subject matter referenced, in this Licen-

se were drafted utilizing the terminology of the Berne Convention for the

Protection of Literary and Artistic Works (as amended on September 28,

1979), the Rome Convention of 1961, the WIPO Copyright Treaty of 1996,

the WIPO Performances and Phonograms Treaty of 1996 and the Univer-

sal Copyright Convention (as revised on July 24, 1971). These rights and

subject matter take effect in the relevant jurisdiction in which the License

terms are sought to be enforced according to the corresponding provisions

of the implementation of those treaty provisions in the applicable natio-

nal law. If the standard suite of rights granted under applicable copyright

law includes additional rights not granted under this License, such addi-

tional rights are deemed to be included in the License; this License is not

intended to restrict the license of any rights under applicable law.

© FUOC • P07/M2101/02710 64 Appendixes

6. Appendix F. GNU Free Documentation License

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 51 Franklin St,

Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and

distribute verbatim copies of this license document, but changing it is not

allowed.

0.�PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional

and useful document "free" in the sense of freedom: to assure everyone the

effective freedom to copy and redistribute it, with or without modifying it,

either commercially or noncommercially. Secondarily, this License preserves

for the author and publisher a way to get credit for their work, while not being

considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of

the document must themselves be free in the same sense. It complements

the GNU General Public License, which is a copyleft license designed for free

software.

We have designed this License in order to use it for manuals for free software,

because free software needs free documentation: a free program should come

with manuals providing the same freedoms that the software does. But this

License is not limited to software manuals; it can be used for any textual work,

regardless of subject matter or whether it is published as a printed book. We

recommend this License principally for works whose purpose is instruction

or reference.

1.�APPLICABILITY�AND�DEFINITIONS

This License applies to any manual or other work, in any medium, that con-

tains a notice placed by the copyright holder saying it can be distributed under

the terms of this License. Such a notice grants a world-wide, royalty-free licen-

se, unlimited in duration, to use that work under the conditions stated herein.

The "Document", below, refers to any such manual or work. Any member of

the public is a licensee, and is addressed as "you". You accept the license if

you copy, modify or distribute the work in a way requiring permission under

copyright law.

A "Modified Version" of the Document means any work containing the Docu-

ment or a portion of it, either copied verbatim, or with modifications and/or

translated into another language.

© FUOC • P07/M2101/02710 65 Appendixes

A "Secondary Section" is a named appendix or a front-matter section of the

Document that deals exclusively with the relationship of the publishers or

authors of the Document to the Document's overall subject (or to related mat-

ters) and contains nothing that could fall directly within that overall subject.

(Thus, if the Document is in part a textbook of mathematics, a Secondary Sec-

tion may not explain any mathematics.) The relationship could be a matter

of historical connection with the subject or with related matters, or of legal,

commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are desig-

nated, as being those of Invariant Sections, in the notice that says that the

Document is released under this License. If a section does not fit the above

definition of Secondary then it is not allowed to be designated as Invariant.

The Document may contain zero Invariant Sections. If the Document does

not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-

Cover Texts or Back-Cover Texts, in the notice that says that the Document is

released under this License. A Front-Cover Text may be at most 5 words, and

a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, repre-

sented in a format whose specification is available to the general public, that is

suitable for revising the document straightforwardly with generic text editors

or (for images composed of pixels) generic paint programs or (for drawings)

some widely available drawing editor, and that is suitable for input to text

formatters or for automatic translation to a variety of formats suitable for in-

put to text formatters. A copy made in an otherwise Transparent file format

whose markup, or absence of markup, has been arranged to thwart or discou-

rage subsequent modification by readers is not Transparent. An image format

is not Transparent if used for any substantial amount of text. A copy that is

not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII wit-

hout markup, Texinfo input format, LaTeX input format, SGML or XML using

a publicly available DTD, and standard-conforming simple HTML, PostScript

or PDF designed for human modification. Examples of transparent image for-

mats include PNG, XCF and JPG. Opaque formats include proprietary formats

that can be read and edited only by proprietary word processors, SGML or

XML for which the DTD and/or processing tools are not generally available,

and the machine-generated HTML, PostScript or PDF produced by some word

processors for output purposes only.

© FUOC • P07/M2101/02710 66 Appendixes

The "Title Page" means, for a printed book, the title page itself, plus such fo-

llowing pages as are needed to hold, legibly, the material this License requires

to appear in the title page. For works in formats which do not have any title

page as such, "Title Page" means the text near the most prominent appearance

of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose tit-

le either is precisely XYZ or contains XYZ in parentheses following text that

translates XYZ in another language. (Here XYZ stands for a specific section

name mentioned below, such as "Acknowledgements", "Dedications", "Endor-

sements", or "History".) To "Preserve the Title" of such a section when you mo-

dify the Document means that it remains a section "Entitled XYZ" according

to this definition.

The Document may include Warranty Disclaimers next to the notice which

states that this License applies to the Document. These Warranty Disclaimers

are considered to be included by reference in this License, but only as regards

disclaiming warranties: any other implication that these Warranty Disclaimers

may have is void and has no effect on the meaning of this License.

2.�VERBATIM�COPYING

You may copy and distribute the Document in any medium, either commer-

cially or noncommercially, provided that this License, the copyright notices,

and the license notice saying this License applies to the Document are repro-

duced in all copies, and that you add no other conditions whatsoever to tho-

se of this License. You may not use technical measures to obstruct or control

the reading or further copying of the copies you make or distribute. However,

you may accept compensation in exchange for copies. If you distribute a large

enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you

may publicly display copies.

3.�COPYING�IN�QUANTITY

If you publish printed copies (or copies in media that commonly have printed

covers) of the Document, numbering more than 100, and the Document's

license notice requires Cover Texts, you must enclose the copies in covers that

carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front

cover, and Back-Cover Texts on the back cover. Both covers must also clearly

and legibly identify you as the publisher of these copies. The front cover must

present the full title with all words of the title equally prominent and visible.

You may add other material on the covers in addition. Copying with changes

limited to the covers, as long as they preserve the title of the Document and

satisfy these conditions, can be treated as verbatim copying in other respects.

© FUOC • P07/M2101/02710 67 Appendixes

If the required texts for either cover are too voluminous to fit legibly, you

should put the first ones listed (as many as fit reasonably) on the actual cover,

and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering mo-

re than 100, you must either include a machine-readable Transparent copy

along with each Opaque copy, or state in or with each Opaque copy a compu-

ter-network location from which the general network-using public has access

to download using public-standard network protocols a complete Transparent

copy of the Document, free of added material. If you use the latter option,

you must take reasonably prudent steps, when you begin distribution of Opa-

que copies in quantity, to ensure that this Transparent copy will remain thus

accessible at the stated location until at least one year after the last time you

distribute an Opaque copy (directly or through your agents or retailers) of that

edition to the public.

It is requested, but not required, that you contact the authors of the Document

well before redistributing any large number of copies, to give them a chance

to provide you with an updated version of the Document.

4.�MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the

conditions of sections 2 and 3 above, provided that you release the Modified

Version under precisely this License, with the Modified Version filling the role

of the Document, thus licensing distribution and modification of the Modifi-

ed Version to whoever possesses a copy of it. In addition, you must do these

things in the Modified Version:

• A. Use in the Title Page (and on the covers, if any) a title distinct from

that of the Document, and from those of previous versions (which should,

if there were any, be listed in the History section of the Document). You

may use the same title as a previous version if the original publisher of

that version gives permission.

• B. List on the Title Page, as authors, one or more persons or entities res-

ponsible for authorship of the modifications in the Modified Version, to-

gether with at least five of the principal authors of the Document (all of its

principal authors, if it has fewer than five), unless they release you from

this requirement.

• C. State on the Title page the name of the publisher of the Modified Ver-

sion, as the publisher.

• D. Preserve all the copyright notices of the Document.

© FUOC • P07/M2101/02710 68 Appendixes

• E. Add an appropriate copyright notice for your modifications adjacent to

the other copyright notices.

• F. Include, immediately after the copyright notices, a license notice giving

the public permission to use the Modified Version under the terms of this

License, in the form shown in the Addendum below.

• G. Preserve in that license notice the full lists of Invariant Sections and

required Cover Texts given in the Document's license notice.

• H. Include an unaltered copy of this License.

• I. Preserve the section Entitled "History", Preserve its Title, and add to it

an item stating at least the title, year, new authors, and publisher of the

Modified Version as given on the Title Page. If there is no section Entitled

"History" in the Document, create one stating the title, year, authors, and

publisher of the Document as given on its Title Page, then add an item

describing the Modified Version as stated in the previous sentence.

• J. Preserve the network location, if any, given in the Document for public

access to a Transparent copy of the Document, and likewise the network

locations given in the Document for previous versions it was based on.

These may be placed in the "History" section. You may omit a network

location for a work that was published at least four years before the Do-

cument itself, or if the original publisher of the version it refers to gives

permission.

• K. For any section Entitled "Acknowledgements" or "Dedications", Preser-

ve the Title of the section, and preserve in the section all the substance

and tone of each of the contributor acknowledgements and/or dedicati-

ons given therein.

• L. Preserve all the Invariant Sections of the Document, unaltered in their

text and in their titles. Section numbers or the equivalent are not consi-

dered part of the section titles.

• M. Delete any section Entitled "Endorsements". Such a section may not be

included in the Modified Version.

• N. Do not retitle any existing section to be Entitled "Endorsements" or to

conflict in title with any Invariant Section.

• O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that

qualify as Secondary Sections and contain no material copied from the Do-

cument, you may at your option designate some or all of these sections as

© FUOC • P07/M2101/02710 69 Appendixes

invariant. To do this, add their titles to the list of Invariant Sections in the

Modified Version's license notice. These titles must be distinct from any other

section titles.

You may add a section Entitled "Endorsements", provided it contains nothing

but endorsements of your Modified Version by various parties--for example,

statements of peer review or that the text has been approved by an organiza-

tion as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage

of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts

in the Modified Version. Only one passage of Front-Cover Text and one of

Back-Cover Text may be added by (or through arrangements made by) any

one entity. If the Document already includes a cover text for the same cover,

previously added by you or by arrangement made by the same entity you are

acting on behalf of, you may not add another; but you may replace the old

one, on explicit permission from the previous publisher that added the old

one.

The author(s) and publisher(s) of the Document do not by this License give

permission to use their names for publicity for or to assert or imply endorse-

ment of any Modified Version.

5.�COMBINING�DOCUMENTS

You may combine the Document with other documents released under this

License, under the terms defined in section 4 above for modified versions,

provided that you include in the combination all of the Invariant Sections

of all of the original documents, unmodified, and list them all as Invariant

Sections of your combined work in its license notice, and that you preserve

all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple

identical Invariant Sections may be replaced with a single copy. If there are

multiple Invariant Sections with the same name but different contents, make

the title of each such section unique by adding at the end of it, in parentheses,

the name of the original author or publisher of that section if known, or else

a unique number. Make the same adjustment to the section titles in the list of

Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the

various original documents, forming one section Entitled "History"; likewise

combine any sections Entitled "Acknowledgements", and any sections Entitled

"Dedications". You must delete all sections Entitled "Endorsements."

6.�COLLECTIONS�OF�DOCUMENTS

© FUOC • P07/M2101/02710 70 Appendixes

You may make a collection consisting of the Document and other documents

released under this License, and replace the individual copies of this License

in the various documents with a single copy that is included in the collection,

provided that you follow the rules of this License for verbatim copying of each

of the documents in all other respects.

You may extract a single document from such a collection, and distribute it

individually under this License, provided you insert a copy of this License into

the extracted document, and follow this License in all other respects regarding

verbatim copying of that document.

7.�AGGREGATION�WITH�INDEPENDENT�WORKS

A compilation of the Document or its derivatives with other separate and in-

dependent documents or works, in or on a volume of a storage or distribution

medium, is called an "aggregate" if the copyright resulting from the compilati-

on is not used to limit the legal rights of the compilation's users beyond what

the individual works permit. When the Document is included in an aggregate,

this License does not apply to the other works in the aggregate which are not

themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the

Document, then if the Document is less than one half of the entire aggregate,

the Document's Cover Texts may be placed on covers that bracket the Docu-

ment within the aggregate, or the electronic equivalent of covers if the Docu-

ment is in electronic form. Otherwise they must appear on printed covers that

bracket the whole aggregate.

8.�TRANSLATION

Translation is considered a kind of modification, so you may distribute trans-

lations of the Document under the terms of section 4. Replacing Invariant Sec-

tions with translations requires special permission from their copyright hol-

ders, but you may include translations of some or all Invariant Sections in

addition to the original versions of these Invariant Sections. You may include

a translation of this License, and all the license notices in the Document, and

any Warranty Disclaimers, provided that you also include the original English

version of this License and the original versions of those notices and disclai-

mers. In case of a disagreement between the translation and the original ver-

sion of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications",

or "History", the requirement (section 4) to Preserve its Title (section 1) will

typically require changing the actual title.

9.�TERMINATION

© FUOC • P07/M2101/02710 71 Appendixes

You may not copy, modify, sublicense, or distribute the Document except as

expressly provided for under this License. Any other attempt to copy, modify,

sublicense or distribute the Document is void, and will automatically termina-

te your rights under this License. However, parties who have received copies,

or rights, from you under this License will not have their licenses terminated

so long as such parties remain in full compliance.

10.�FUTURE�REVISIONS�OF�THIS�LICENSE

The Free Software Foundation may publish new, revised versions of the GNU

Free Documentation License from time to time. Such new versions will be

similar in spirit to the present version, but may differ in detail to address new

problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the

Document specifies that a particular numbered version of this License "or any

later version" applies to it, you have the option of following the terms and

conditions either of that specified version or of any later version that has been

published (not as a draft) by the Free Software Foundation. If the Document

does not specify a version number of this License, you may choose any version

ever published (not as a draft) by the Free Software Foundation.

How�to�use�this�License�for�your�documents

To use this License in a document you have written, include a copy of the

License in the document and put the following copyright and license notices

just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute

and/or modify this document under the terms of the GNU Free Documenta-

tion License, Version 1.2 or any later version published by the Free Software

Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-

Cover Texts. A copy of the license is included in the section entitled "GNU

Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, repla-

ce the "with...Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover

Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combina-

tion of the three, merge those two alternatives to suit the situation.

© FUOC • P07/M2101/02710 72 Appendixes

If your document contains nontrivial examples of program code, we recom-

mend releasing these examples in parallel under your choice of free software

license, such as the GNU General Public License, to permit their use in free

software.

© FUOC • P07/M2101/02710 73 Appendixes

7. Glossary

ACM Association for Computing Machinery

AFPL Aladdin Free Public License

ALSA Advanced Linux Sound Architecture

AOL America Online

API Application program interface

ARM Advanced RISC machines

ASCII American standard code for information interchange

AT&T American Telephone & Telegraph

AITC Agency of Information Technologies and Communication

ATK Accessibility Toolkit

BIND Berkeley Internet Name Domain

BIRT Business Intelligence and Reporting Tools

BITNET Because It's There Network

BSA Business Software Alliance

BSD Berkeley Software Distribution

BSDI Berkeley Software Design Incorporated

BSI Bundesamt fur Sicherheit in der Informationstechnik

CDDL Common Development and Distribution License

CD-ROM Compact disc read-only memory

CEPS Cisco Enterprise Print System

CERN Conseil Europeen pour la Recherche Nucléaire

CGI Common Gateway Interface

COCOMO Cost construction model

CORBA Common object request broker architecture

CPL Common Public License

CSRG Computer Systems Research Group

CSS Cascading style sheet

CVS Control version system

DARPA Defense Advanced Research Projects Agency

© FUOC • P07/M2101/02710 74 Appendixes

DBUS Desktop Bus

DCOP Desktop communication protocol

DEC Digital Equipment Corporation

DECUS Digital Equipment Computer User Society

DFSG Debian Free Software Guidelines

DRM Digital rights management

DSDP Device Software Development Platform

DTD Document type definition

DTP Data tools platform

DVD Digital video disk

ECTS European credit transfer scheme

EMP Eclipse Modeling Project

EPL Eclipse Public License

HCEST Higher College of Experimental Sciences and Technology

ETP Eclipse Tools Project

FAQ Frequently asked questions

FDL Free Documentation License

FIC First International Computer

FSF Free Software Foundation

FTP File transfer protocol

FUD Fear, uncertainty, doubt

GCC GNU C Compiler

GDB GNU Debugger

GFDL GNU Free Documentation License

GIMP GNU Image Manipulation Program

GNAT GNU Ada Translator

GNATS GNU Bug Tracking System

GNU GNU's Not Unix

GPL General Public License

GTK GIMP Toolkit

GUADEC GNOME User and Developer European Conference

HIRD HURD of Interfaces Representing Depth

HTML Hypertext markup language

© FUOC • P07/M2101/02710 75 Appendixes

HTTP Hypertext transfer protocol

HURD HIRD of Unix-Replacing Daemons

R&D Research and development

IBM International Business Machines Corporation

IDE Integrated development environment

IEC International Electrotechnical Commission

IETF Internet Engineering Task Force

INRIA Institut National de Recherche en Informatique et en Automatique

IP Internet protocol

IRC Internet Relay Chat

ISO International Standards Organization

ITU International Telecommunications Union

JDK Java Developer Kit

JPEG Joint Photographic Experts Group

JRE Java Runtime Environment

JVM Java Virtual Machine

KBSt Koordinierungs-und Beratungsstelle der Bundesregierung fur Informations-
technik in der Bundesverwaltung

KDE K Desktop Environment

LGPL Lesser General Public License

LISP List processing language

LLC Limited Liability Company

IPA Intellectual Property Act

LTS Long term support

MCC Manchester City Council

MIT Massachusetts Institute of Technology

MPEG Moving Picture Experts Group

MPL Mozilla Public License

MTIC Mission Interministerielle de Soutin Technique pour le Developpement des
technologies de l'Information et de la Communication dans l'Administration

NASA National Aeronautics and Space Administration

NCSA National Center for Supercomputing Applications

NPL Netscape Public License

NSFNet National Science Foundation Network

© FUOC • P07/M2101/02710 76 Appendixes

NUMA Non-uniform memory access

NYU New York University

OASIS Organization for the Advancement of Structured Information Standards

ODF Open document format

ODP Open Directory Project

OHGPL OpenIPCore Hardware General Public License

OLPC One Laptop Per Children

WTO World Trade Organisation

WIPO World Intellectual Property Organisation

ORB Object request broker

OSDN Open Software Development Network

OSGi Open Services Gateway Initiative

OSI Open Source Initiative

GDD Gross Domestic Product

PDA Portable digital assistant

PDF Portable document format

PDP Programmed data processor

PHP PHP hypertext preprocessor

PLOS Public Library of Science

PNG Portable network graphics

FAQ Frequently asked questions

QPL Qt Public License

RCP Rich client plaftorm

RDF Resource description framework

RFC Request for comments

RFP Request for proposal

RHAD Red Hat Advanced Development

RPM Red Hat Package Manager

RTF Rich text format

SCO Santa Cruz Operation

SPE Secretariat of Public Education

SGI Silicon Graphics Incorporated

SGML Standard generalised markup language

© FUOC • P07/M2101/02710 77 Appendixes

SISSL Sun Industry Standards Source License

SLS Softlanding Linux System

SOA Service oriented architecture

SPARC Scalable processor architecture

SPICE Simulation program with integrated circuits emphasis

SSL Secure socket layer

TAMU Texas A&M University

TCP Transport control protocol

TEI Text Encoding Initiative

TPTP Test and Performance Tools Project

TRIPS Trade-related intellectual property rights

UMTS Universal mobile telecommunications system

UOC Open University of Catalonia

USA United States of America

USD United States dollar

USENET User network

USENIX Unix Users Group

USL Unix System Laboratories

UUCP UNIX to UNIX copy protocol

VHDL Very high speed integrated circuit hardware description language

W3C World Wide Web Consortium

WIPO World Intellectual Property Organisation

WTO World Trade Organisation

WTP Web Tools Project

WWW World Wide Web

WYSIWYG What you see is what you get

XCF Experimental computing facility format

XML Extensible markup language

© FUOC • P07/M2101/02710 78 Appendixes

8. Style guide

Some notes on the style used in this document. Please, respect these notes if

you send modifications, suggestions or new texts, or state why they do not

seem reasonable to you.

Highlighted�paragraphs

The highlighted paragraphs are the ones that should appear emphasized to

the reader, in respect of the other text. For example, in the printed version,

this could be achieved by laying out the highlighted paragraphs in boxes next

to the sides of the main body of the text, or in "sidebars". The following types

of highlighted paragraphs are used:

• Tips and suggestions for the reader, especially when they require some

form of "action by the reader", such as going to a website or trying out a

programme. tips will be used.

• Comments for the reader, that provide further explanations or more de-

tails: notes will be used.

In both cases, it is recommended, whenever appropriate, to use titles to pro-

vide a heading to the emphasized paragraph (which will not be necessary if

the paragraph is very short or does not cover a subject that is uniform enough

to merit a title.

Quotation�marks

Avoid quotation marks with ASCII characters (") even with the correspon-

ding character codes ("), as their purpose is to highlight or quote. Plus, some

(db2latex) formatters do horrible things with them. Bold should be used for

highlighting and quotes for citing. For long quotes in separate paragraphs use

blockquote.

Notes�that�aren't�intended�for�the�readers

The notes that are not intended for the readers (notes for other writers, com-

ments on text that should be included, notes for editors, notes on corrections

that must be made, etc.) these will be included using remarks.

In these cases, the note will begin with an authoring element specifying the

alias of the writer that has included it (in the case of those who have access to

Subversion, the alias will be their identifier in Subversion).

© FUOC • P07/M2101/02710 79 Appendixes

Tags

To minimise the probability of collisions in the space for the names of the

citable labels within the document, we propose the following norms for cho-

osing the names:

• Chapter tags. They will begin with the chap- chain followed by a text that

identifies the chapter (normally the name of the file in which it is written).

For example, a chapter called "Economy" which is in the economy.xml

file, will have the tag chap-economy

• Section tags. They will begin with the sect- chain followed by the tag of

the chapter in which they are located (without the prefix chap-), followed

by a text that identifies the section. For example, a section that is called

"Business models" within a chapter with the tag chap-economy might

have the tag sect-economy-business-models

In order to build tags, alphanumeric characters and (minus sign) will be used.

Text�in�other�languages

To all possible extent, we recommend using translations that are accepted in

Spanish. When this is not possible, the word in another language will be put

it, marked with the element foreignphrase, followed by the expression in Spa-

nish, in parenthesis. If the same term appears again later, it will no longer be

necessary to include it in parenthesis in Spanish.

Example: <foreignphrase>fork</foreignphrase> (division).

If in some case a term in Spanish is used that could lead to confusion or is

not widely recognised, its equivalent in a different language may be cited in

parenthesis (also marked with foreign phrase).

Images

For images, inside or outside the figures, constructions similar to these will

be used:

<![CDATA[

 <mediaobject>

 <imageobject>

 <imagedata fileref="imagen.png" format="PNG" scale="50"/>

 </imageobject>

 </mediaobject>

They may not be postscripts and must be scaled to the appropriate size.

	Introduction to Free Software
	Credits
	Dedication
	Introduction
	Contents

	XX07_M2101_02708-1.pdf
	Free Software
	Index
	1. Introduction
	1.1. The concept of software freedom
	1.1.1. Definition
	1.1.2. Related terms

	1.2. Motivations
	1.3. The consequences of the freedom of software
	1.3.1. For the end user
	1.3.2. For the public administration
	1.3.3. For the developer
	1.3.4. For the integrator
	1.3.5. For service and maintenance providers

	1.4. Summary

	2. A bit of history
	2.1. Free software before free software
	2.1.1. And in the beginning it was free
	2.1.2. The 70s and early 80s
	2.1.3. The early development of Unix

	2.2. The beginning: BSD, GNU
	2.2.1. Richard Stallman, GNU, FSF: the free software movement is born
	2.2.2. Berkeley's CSRG
	2.2.3. The beginnings of the Internet
	2.2.4. Other projects

	2.3. All systems go
	2.3.1. The search for a kernel
	2.3.2. The *BSD family
	2.3.3. GNU/Linux comes onstage

	2.4. A time of maturation
	2.4.1. End of the nineties
	2.4.2. Decade of 2000

	2.5. The future: an obstacle course?
	2.6. Summary

	3. Legal aspects
	3.1. Brief introduction to intellectual property
	3.1.1. Copyright
	3.1.2. Trade secret
	3.1.3. Patents and utility models
	3.1.4. Registered trademarks and logos

	3.2. Free software licences
	3.2.1. Types of licences
	3.2.2. Permissive licences
	3.2.3. Strong licences
	3.2.4. Distribution under several licences
	3.2.5. Program documentation

	3.3. Summary

	4. Developers and their motivations
	4.1. Introduction
	4.2. Who are developers?
	4.3. What do developers do?
	4.4. Geographical distribution
	4.5. Dedication
	4.6. Motivations
	4.7. Leadership
	4.8. Summary and conclusions

	5. Economy
	5.1. Funding free software projects
	5.1.1. Public funding
	5.1.2. Private not-for-profit funding
	5.1.3. Financing by someone requiring improvements
	5.1.4. Funding with related benefits
	5.1.5. Financing as an internal investment
	5.1.6. Other financing modes

	5.2. Business models based on free software
	5.2.1. Better knowledge
	5.2.2. Better knowledge with limitations
	5.2.3. Source of a free product
	5.2.4. Product source with limitations
	5.2.5. Special licences
	5.2.6. Brand sale

	5.3. Other business model classifications
	5.3.1. Hecker classification

	5.4. Impact on monopoly situations
	5.4.1. Elements that favour dominant products
	5.4.2. The world of proprietary software
	5.4.3. The situation with free software
	5.4.4. Strategies for becoming a monopoly with free software

	6. Free software and public administrations
	6.1. Impact on the public administrations
	6.1.1. Advantages and positive implications
	6.1.2. Difficulties of adoption and other problems

	6.2. Actions of the public administrations in the world of free software
	6.2.1. How to satisfy the needs of the public administrations?
	6.2.2. Promotion of the information society
	6.2.3. Research promotion

	6.3. Examples of legislative initiatives
	6.3.1. Draft laws in France
	6.3.2. Draft law of Brazil
	6.3.3. Draft laws in Peru
	6.3.4. Draft laws in Spain

	7. Free software engineering
	7.1. Introduction
	7.2. The cathedral and the bazaar
	7.3. Leadership and decision-making in the bazaar
	7.4. Free software processes
	7.5. Criticism of ''The cathedral and the bazaar''
	7.6. Quantitative studies
	7.7. Future work
	7.8. Summary

	8. Development environments and technologies
	8.1. Description of environments, tools and systems
	8.2. Languages and associated tools
	8.3. Integrated development environments
	8.4. Basic collaboration mechanisms
	8.5. Source management
	8.5.1. CVS
	8.5.2. Other source management systems

	8.6. Documentation
	8.6.1. DocBook
	8.6.2. Wikis

	8.7. Bug management and other issues
	8.8. Support for other architectures
	8.9. Development support sites
	8.9.1. SourceForge
	8.9.2. SourceForge heirs
	8.9.3. Other sites and programs

	9. Case studies
	9.1. Linux
	9.1.1. A history of Linux
	9.1.2. Linux's way of working
	9.1.3. Linux's current status

	9.2. FreeBSD
	9.2.1. History of FreeBSD
	9.2.2. Development in FreeBSD
	9.2.3. Decision-making process in FreeBSD
	9.2.4. Companies working around FreeBSD
	9.2.5. Current status of FreeBSD
	9.2.6. X-ray of FreeBSD
	9.2.7. Academic studies on FreeBDS

	9.3. KDE
	9.3.1. History of KDE
	9.3.2. Development of KDE
	9.3.3. The KDE League
	9.3.4. Current status of KDE
	9.3.5. X-ray of KDE

	9.4. GNOME
	9.4.1. History of GNOME
	9.4.2. The GNOME Foundation
	9.4.3. The industry working around GNOME
	9.4.4. GNOME's current status
	9.4.5. X-ray of GNOME
	9.4.6. Academic studies on GNOME

	9.5. Apache
	9.5.1. History of Apache
	9.5.2. Development of Apache
	9.5.3. X-ray of Apache

	9.6. Mozilla
	9.6.1. History of Mozilla
	9.6.2. X-ray of Mozilla

	9.7. OpenOffice.org
	9.7.1. History of OpenOffice.org
	9.7.2. Organisation of OpenOffice.org
	9.7.3. X-ray of OpenOffice.org

	9.8. Red Hat Linux
	9.8.1. History of Red Hat
	9.8.2. Current status of Red Hat.
	9.8.3. X-ray of Red Hat

	9.9. Debian GNU/Linux
	9.9.1. X-ray of Debian
	9.9.2. Comparison with other operating systems

	9.10. Eclipse
	9.10.1. History of Eclipse
	9.10.2. Current state of Eclipse
	9.10.3. X-ray of Eclipse

	10. Other free resources
	10.1. The most important free resources
	10.1.1. Scientific articles
	10.1.2. Laws and standards.
	10.1.3. Encyclopaedias
	10.1.4. Courses
	10.1.5. Collections and databases
	10.1.6. Hardware
	10.1.7. Literature and art

	10.2. Licenses for other free resources
	10.2.1. GNU free documentation license
	10.2.2. Creative Commons licenses

	Bibliography

	XX07_M2101_02708-2.pdf
	Appendixes
	Index
	1. Appendix A. Learning guide
	2. Appendix B. Key dates in the history of free software
	3. Appendix C. GNU Public License
	4. Appendix D. Texts of some legislative proposals and related documents
	5. Appendix E. Creative Commons' Attribution-ShareAlike
	6. Appendix F. GNU Free Documentation License
	7. Glossary
	8. Style guide

